{"title":"Existence result for the CR-Yamabe equation","authors":"Vittorio Martino","doi":"10.6092/ISSN.2240-2829/4017","DOIUrl":null,"url":null,"abstract":"In this note we will prove that the CR-Yamabe equation has infinitely many changing-sign solutions. The problem is variational but the associated functional does not satisfy the Palais-Smale compactness condition; by mean of a suitable group action we will define a subspace on which we can apply the minimax argument of Ambrosetti-Rabinowitz. The result solves a question left open from the classification results of positive solutions by Jerison-Lee in the '80s.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"4 1","pages":"38-46"},"PeriodicalIF":0.2000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/4017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we will prove that the CR-Yamabe equation has infinitely many changing-sign solutions. The problem is variational but the associated functional does not satisfy the Palais-Smale compactness condition; by mean of a suitable group action we will define a subspace on which we can apply the minimax argument of Ambrosetti-Rabinowitz. The result solves a question left open from the classification results of positive solutions by Jerison-Lee in the '80s.