Sull’equazione det Du = f senza ipotesi di segno

IF 0.2 Q4 MATHEMATICS
G. Cupini
{"title":"Sull’equazione det Du = f senza ipotesi di segno","authors":"G. Cupini","doi":"10.6092/ISSN.2240-2829/2258","DOIUrl":null,"url":null,"abstract":"We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the nonlinear problem det?u (x) = f (x) x ? u (x) = x x ? ? where k ? 1 is an integer, is a bounded smooth domain in Rn and f ? Ck ???? satisfies Z f (x) dx = meas . The positivity of f is a standard assumption in the literature. In a recent joint paper with B.Dacorogna and O.Kneuss (EPFL) we prove the existence of a solution u ? Ck ???? ;Rn with no assumptions on the sign of f. Here we state this theorem together with some related results and we outline the main features of the problem.
在方程det Du = f上,没有符号假设
我们考虑非线性问题det?U (x) = f (x) x ?U (x) = x ?? k在哪里?1是一个整数,是Rn和f中的有界光滑定义域吗?Ck ? ?满足zf (x) dx =均值。f的正性是文献中的一个标准假设。在最近与B.Dacorogna和O.Kneuss (EPFL)的一篇联合论文中,我们证明了u ?Ck ? ?在这里,我们陈述了这个定理以及一些相关的结果,并概述了这个问题的主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信