Decadimento uniforme per equazioni integro-differenziali lineari di Volterra

IF 0.2 Q4 MATHEMATICS
Stefania Gatti
{"title":"Decadimento uniforme per equazioni integro-differenziali lineari di Volterra","authors":"Stefania Gatti","doi":"10.6092/ISSN.2240-2829/2669","DOIUrl":null,"url":null,"abstract":"This talk is devoted to some recent results concerning the exponential and the polynomial decays of the energy associated with a linear Volterra integro-differential equation of hyperbolic type in a Hilbert space, which is an abstract version of the equation describing the motion of a linearly viscoelastic solid occupying a (bounded) volume at rest. We provide sufficient conditions for the decay to hold, without invoking differential inequalities involving the convolution kernel. A similar analysis is carried on in the whole N-dimensional real space, although both the polynomial and the exponential decay of the memory kernel lead to a polynomial decay of the energy, with a rate influenced by the space dimension N. These results are contained in two joint papers with Monica Conti and Vittorino Pata (Politecnico di Milano).","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"2 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This talk is devoted to some recent results concerning the exponential and the polynomial decays of the energy associated with a linear Volterra integro-differential equation of hyperbolic type in a Hilbert space, which is an abstract version of the equation describing the motion of a linearly viscoelastic solid occupying a (bounded) volume at rest. We provide sufficient conditions for the decay to hold, without invoking differential inequalities involving the convolution kernel. A similar analysis is carried on in the whole N-dimensional real space, although both the polynomial and the exponential decay of the memory kernel lead to a polynomial decay of the energy, with a rate influenced by the space dimension N. These results are contained in two joint papers with Monica Conti and Vittorino Pata (Politecnico di Milano).
沃尔泰拉线性积分微分方程的均匀衰变
本讲座将讨论Hilbert空间中与线性Volterra双曲型积分微分方程相关的能量指数衰减和多项式衰减的一些最新结果,该方程是描述线性粘弹性固体在静止状态下占据(有界)体积的运动方程的抽象版本。我们提供了衰减保持的充分条件,而不调用涉及卷积核的微分不等式。在整个n维实空间中进行了类似的分析,尽管存储核的多项式和指数衰减都会导致能量的多项式衰减,其速率受空间维数n的影响。这些结果包含在与Monica Conti和Vittorino Pata (Politecnico di Milano)的两篇联合论文中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信