Potenze frazionarie e teoria della interpolazione per operatori lineari multivoci ed applicazioni

IF 0.2 Q4 MATHEMATICS
A. Favini
{"title":"Potenze frazionarie e teoria della interpolazione per operatori lineari multivoci ed applicazioni","authors":"A. Favini","doi":"10.6092/ISSN.2240-2829/2667","DOIUrl":null,"url":null,"abstract":"We provide intermediate properties for the domains of the fractional powers of an abstract multivalued linear operator A of weak parabolic type. In particular, the results exhibit the special role played by the linear subspace A0. The behaviour of the singular semigroup generated by A with respect to the domains of the fractional powers is then studied. Such results are applied to maximal time and space regularity for solutions to abstract multivalued evolution equations. Some concrete cases of partial differential equations enlighten the abstract results.","PeriodicalId":41199,"journal":{"name":"Bruno Pini Mathematical Analysis Seminar","volume":"2 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bruno Pini Mathematical Analysis Seminar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.2240-2829/2667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide intermediate properties for the domains of the fractional powers of an abstract multivalued linear operator A of weak parabolic type. In particular, the results exhibit the special role played by the linear subspace A0. The behaviour of the singular semigroup generated by A with respect to the domains of the fractional powers is then studied. Such results are applied to maximal time and space regularity for solutions to abstract multivalued evolution equations. Some concrete cases of partial differential equations enlighten the abstract results.
多价线性操作符和应用的分馏功率和插值理论
给出了一类弱抛物型抽象多值线性算子A的分数次幂的定域的中间性质。特别地,结果显示了线性子空间A0所起的特殊作用。然后研究了由A生成的奇异半群在分数次幂定义域上的行为。将所得结果应用于抽象多值演化方程解的最大时空正则性问题。偏微分方程的一些具体例子对抽象结果有启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信