On the specification of prior distributions for variance components in disease mapping models

IF 1.6 Q1 STATISTICS & PROBABILITY
E. Fabrizi, F. Greco, C. Trivisano
{"title":"On the specification of prior distributions for variance components in disease mapping models","authors":"E. Fabrizi, F. Greco, C. Trivisano","doi":"10.6092/ISSN.1973-2201/6319","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of specifying priors for the variance components in the Bayesian analysis of the Besag-York-Mollie model, a model that is popular among epidemiologists for disease mapping. The model encompasses two sets of random effects: one spatially structured to model spatial autocorrelation and the other spatially unstructured to describe residual heterogeneity. In this model, prior specification for variance components is an important problem because these priors maintain their influence on the posterior distributions of relative risks when mapping rare diseases. We propose using generalised inverse Gaussian priors, a broad class of distributions that includes many distributions commonly used as priors in this context, such as inverse gammas. We discuss the prior parameter choice with the aim of balancing the prior weight of the two sets of random effects on total variation and controlling the amount of shrinkage. The suggested prior specification strategy is compared to popular alternatives using a simulation exercise and applications to real data sets.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"76 1","pages":"93-111"},"PeriodicalIF":1.6000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/6319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we consider the problem of specifying priors for the variance components in the Bayesian analysis of the Besag-York-Mollie model, a model that is popular among epidemiologists for disease mapping. The model encompasses two sets of random effects: one spatially structured to model spatial autocorrelation and the other spatially unstructured to describe residual heterogeneity. In this model, prior specification for variance components is an important problem because these priors maintain their influence on the posterior distributions of relative risks when mapping rare diseases. We propose using generalised inverse Gaussian priors, a broad class of distributions that includes many distributions commonly used as priors in this context, such as inverse gammas. We discuss the prior parameter choice with the aim of balancing the prior weight of the two sets of random effects on total variation and controlling the amount of shrinkage. The suggested prior specification strategy is compared to popular alternatives using a simulation exercise and applications to real data sets.
疾病制图模型中方差成分的先验分布规范
在本文中,我们考虑了贝叶斯分析贝萨克-约克-莫利模型中方差成分的指定先验问题,贝萨克-约克-莫利模型是流行病学家用于疾病绘图的流行模型。该模型包含两组随机效应:一组空间结构化用于模拟空间自相关,另一组空间非结构化用于描述剩余异质性。在该模型中,方差成分的先验规范是一个重要的问题,因为这些先验在绘制罕见病时保持其对相对风险后验分布的影响。我们建议使用广义逆高斯先验,这是一类广泛的分布,包括在这种情况下通常用作先验的许多分布,例如逆伽马。我们讨论了先验参数的选择,目的是平衡两组随机效应对总变差的先验权重,并控制收缩量。通过模拟练习和实际数据集的应用,将建议的先验规范策略与流行的替代策略进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信