{"title":"The Cambanis family of bivariate distributions: Properties and applications","authors":"N. Nair, Johny Scaria, Sithara Mohan.","doi":"10.6092/ISSN.1973-2201/6159","DOIUrl":null,"url":null,"abstract":"The Cambanis family of bivariate distributions was introduced as a generalization of the Farlie-Gumbel-Morgenstern system. The present work is an attempt to investigate the distributional characteristics and applications of the family. We derive various coecients of association, dependence concepts and time-dependent measures. Bivariate reliability functions such as hazard rates and mean residual life functions are analysed. The application of the family as a model for bivariate lifetime data is also demonstrated.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/6159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8
Abstract
The Cambanis family of bivariate distributions was introduced as a generalization of the Farlie-Gumbel-Morgenstern system. The present work is an attempt to investigate the distributional characteristics and applications of the family. We derive various coecients of association, dependence concepts and time-dependent measures. Bivariate reliability functions such as hazard rates and mean residual life functions are analysed. The application of the family as a model for bivariate lifetime data is also demonstrated.