The Photo-Protective Activity of Crataegus monogyna Extract Proved by Complementary Mechanisms of Skin Inflammation, Damage of Extracellular Matrix, Cellular Survival and Proliferation Disorders
B. Dumitriu, L. Olariu, D. Ene, L. Zglimbea, N. Roșoiu
{"title":"The Photo-Protective Activity of Crataegus monogyna Extract Proved by Complementary Mechanisms of Skin Inflammation, Damage of Extracellular Matrix, Cellular Survival and Proliferation Disorders","authors":"B. Dumitriu, L. Olariu, D. Ene, L. Zglimbea, N. Roșoiu","doi":"10.6000/1927-3037/2012.01.03.04","DOIUrl":null,"url":null,"abstract":"The skin photo-ageing and photo-carcinogenesis are based on cellular mechanisms triggered by UV-radiation, starting with oxidative stress and inflammation, activation of matrix-metalloproteinase (MMP) that increase the structural protein degradation, ending with DNA damage and apoptosis induction. In order to claim the photo-protective activity of an ingredient it’s important to explore the main pathways involved in this complex process, highlighting its target action. Our studies are based on a cellular screening of UV-A and UV-B irradiated keratinocytes (HaCat cell line), focusing on the apoptosis induction, cell cycle sequentiation, metalloproteinase’s expression, pro-inflammatory cytokines release and IL1α as sensitization molecule, as well as the antioxidant capacity of the extract, and acting on catalase and superoxide-dismutase activity. The investigation techniques are flow cytometry (cellular parameters fluorescent staining and beads-based assay for soluble protein detection), zymography and enzymatic activity tests. The Crataegus monogyna extract, with a rich content of pro-antocians, flavones and polyphenolcarboxylic acids, show a UV-A cellular protection and dose dependent inhibition of inflammatory cytokines and MMP2 and 9 after both UV-A and UV-B irradiation. All these effects are sustained by a cumulative antioxidant capacity at enzymatic and intracellular oxygen radical level. These findings recommend the phyto-complex for the prevention or therapy of UV-photo damages.","PeriodicalId":90181,"journal":{"name":"International journal of biotechnology for wellness industries","volume":"1 1","pages":"177-188"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of biotechnology for wellness industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6000/1927-3037/2012.01.03.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The skin photo-ageing and photo-carcinogenesis are based on cellular mechanisms triggered by UV-radiation, starting with oxidative stress and inflammation, activation of matrix-metalloproteinase (MMP) that increase the structural protein degradation, ending with DNA damage and apoptosis induction. In order to claim the photo-protective activity of an ingredient it’s important to explore the main pathways involved in this complex process, highlighting its target action. Our studies are based on a cellular screening of UV-A and UV-B irradiated keratinocytes (HaCat cell line), focusing on the apoptosis induction, cell cycle sequentiation, metalloproteinase’s expression, pro-inflammatory cytokines release and IL1α as sensitization molecule, as well as the antioxidant capacity of the extract, and acting on catalase and superoxide-dismutase activity. The investigation techniques are flow cytometry (cellular parameters fluorescent staining and beads-based assay for soluble protein detection), zymography and enzymatic activity tests. The Crataegus monogyna extract, with a rich content of pro-antocians, flavones and polyphenolcarboxylic acids, show a UV-A cellular protection and dose dependent inhibition of inflammatory cytokines and MMP2 and 9 after both UV-A and UV-B irradiation. All these effects are sustained by a cumulative antioxidant capacity at enzymatic and intracellular oxygen radical level. These findings recommend the phyto-complex for the prevention or therapy of UV-photo damages.