{"title":"Largeness and equational probability in groups","authors":"Khaled K. Jaber, F. Wagner","doi":"10.5802/ambp.388","DOIUrl":null,"url":null,"abstract":"We define k-genericity and k-largeness for a subset of a group, and determine the value of k for which a k-large subset of G^n is already the whole of G^n , for various equationally defined subsets. We link this with the inner measure of the set of solutions of an equation in a group, leading to new results and/or proofs in equational probabilistic group theory.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
We define k-genericity and k-largeness for a subset of a group, and determine the value of k for which a k-large subset of G^n is already the whole of G^n , for various equationally defined subsets. We link this with the inner measure of the set of solutions of an equation in a group, leading to new results and/or proofs in equational probabilistic group theory.