Composite values of polynomial power sums

Q4 Mathematics
C. Fuchs, C. Karolus
{"title":"Composite values of polynomial power sums","authors":"C. Fuchs, C. Karolus","doi":"10.5802/ambp.380","DOIUrl":null,"url":null,"abstract":"Let (Gn(x))n=0 be a d-th order linear recurrence sequence having polynomial characteristic roots, one of which has degree strictly greater than the others. Moreover, letm ≥ 2 be a given integer. We ask for n ∈ N such that the equation Gn(x) = g ◦ h is satisfied for a polynomial g ∈ C[x] with deg g = m and some polynomial h ∈ C[x]with degh > 1. We prove that for all but finitely many n these decompositions can be described in “finite terms” coming from a generic decomposition parameterized by an algebraic variety. All data in this description will be shown to be effectively computable.","PeriodicalId":52347,"journal":{"name":"Annales Mathematiques Blaise Pascal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques Blaise Pascal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ambp.380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Let (Gn(x))n=0 be a d-th order linear recurrence sequence having polynomial characteristic roots, one of which has degree strictly greater than the others. Moreover, letm ≥ 2 be a given integer. We ask for n ∈ N such that the equation Gn(x) = g ◦ h is satisfied for a polynomial g ∈ C[x] with deg g = m and some polynomial h ∈ C[x]with degh > 1. We prove that for all but finitely many n these decompositions can be described in “finite terms” coming from a generic decomposition parameterized by an algebraic variety. All data in this description will be shown to be effectively computable.
多项式幂和的复合值
设(Gn(x))n=0是一个具有多项式特征根的d阶线性递归序列,其中一个特征根的度数严格大于其他特征根。且令m≥2为给定整数。我们要求n∈n使得方程Gn(x) = g◦h对于一个多项式g∈C[x],其度g = m和某个多项式h∈C[x],其度> 1是满足的。我们证明了除了有限个n外,所有这些分解都可以用由代数变量参数化的一般分解的“有限项”来描述。本描述中的所有数据都将显示为可有效计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematiques Blaise Pascal
Annales Mathematiques Blaise Pascal Mathematics-Algebra and Number Theory
CiteScore
0.50
自引率
0.00%
发文量
9
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信