{"title":"Taxonomy, phylogeny and divergence times of Polyporus (Basidiomycota) and related genera","authors":"X. Ji, J. Zhou, C. Song, T. Xu, DM Wu, B. Cui","doi":"10.5943/mycosphere/13/1/1","DOIUrl":null,"url":null,"abstract":"Polyporus is a taxonomically controversial genus which includes species belonging to six infrageneric groups. Recently, many species of Polyporus have been transferred into other related genera viz. Cerioporus, Favolus, Lentinus, Neofavolus and Picipes based on the phylogenetic and morphological analyses. To ascertain the relationships of Polyporus and its allied genera, eight DNA fragments viz. the internal transcribed spacers 1 and 2 with the 5.8S rDNA (ITS), the nuclear ribosomal large subunit (nLSU), partial translation elongation factor 1-α gene (EF1-α), the mitochondrial small-subunit (mtSSU), the β-tubulin gene (TUB), the gene for RNA polymerase II largest subunit (RPB1), the gene for RNA polymerase II second largest subunit (RPB2) and the nuclear ribosomal small subunit (nSSU), are used in the molecular systematic studies. Phylogenetic analyses were carried out based on two combined datasets (ITS+nLSU) and (ITS+nLSU+EF1α+mtSSU+RPB1+RPB2+nSSU+TUB), and the results indicated that species of Polyporus and its related genera fell into six well supported clades: the picipes clade, the favolus calde, the neofavolus clade, the lentinus clade, the core polyporus clade and the squamosus clade. Moreover, the conserved regions of six DNA fragments (5.8S, nLSU, EF1-α, RPB1, RPB2 and nSSU) were used to analyze the divergence times and evolutionary relationships of Polyporus and its related genera by using BEAST v1.8. Bayesian evolutionary analysis revealed that the ancestor of Polyporales split at about 141.81 Mya, while the mean stem ages of the six major clades of Polyporus and its allied genera were 49–63 Mya. Based on the combined analyses of morphology, phylogenies and divergence times, species in the picipes clade formed the genus Picipes by the coriaceous (fresh) to hard (dry) basidiomata and strongly branched skeleto-binding hyphae; species nested in the favolus clade and the neofavolus clade were separately treated as two distinct genera Favolus and Neofavolus; the polyporoid species in the lentinus clade with central and light-colored stipe and inflated hyphae were transferred into Lentinus, and the core polyporus clade was treated as Polyporus s. str. The squamosus clade contained species belonging to several different genera viz. Datronia, Datroniella, Echinochaete, Mycobonia, Neodatronia, Polyporus s. lat. and Pseudofavolus, but there are no enough efficient morphological evidence to combine all species in the squamosus Mycosphere 13(1): 1–52 (2022) www.mycosphere.org ISSN 2077 7019","PeriodicalId":48718,"journal":{"name":"Mycosphere","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycosphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5943/mycosphere/13/1/1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 18
Abstract
Polyporus is a taxonomically controversial genus which includes species belonging to six infrageneric groups. Recently, many species of Polyporus have been transferred into other related genera viz. Cerioporus, Favolus, Lentinus, Neofavolus and Picipes based on the phylogenetic and morphological analyses. To ascertain the relationships of Polyporus and its allied genera, eight DNA fragments viz. the internal transcribed spacers 1 and 2 with the 5.8S rDNA (ITS), the nuclear ribosomal large subunit (nLSU), partial translation elongation factor 1-α gene (EF1-α), the mitochondrial small-subunit (mtSSU), the β-tubulin gene (TUB), the gene for RNA polymerase II largest subunit (RPB1), the gene for RNA polymerase II second largest subunit (RPB2) and the nuclear ribosomal small subunit (nSSU), are used in the molecular systematic studies. Phylogenetic analyses were carried out based on two combined datasets (ITS+nLSU) and (ITS+nLSU+EF1α+mtSSU+RPB1+RPB2+nSSU+TUB), and the results indicated that species of Polyporus and its related genera fell into six well supported clades: the picipes clade, the favolus calde, the neofavolus clade, the lentinus clade, the core polyporus clade and the squamosus clade. Moreover, the conserved regions of six DNA fragments (5.8S, nLSU, EF1-α, RPB1, RPB2 and nSSU) were used to analyze the divergence times and evolutionary relationships of Polyporus and its related genera by using BEAST v1.8. Bayesian evolutionary analysis revealed that the ancestor of Polyporales split at about 141.81 Mya, while the mean stem ages of the six major clades of Polyporus and its allied genera were 49–63 Mya. Based on the combined analyses of morphology, phylogenies and divergence times, species in the picipes clade formed the genus Picipes by the coriaceous (fresh) to hard (dry) basidiomata and strongly branched skeleto-binding hyphae; species nested in the favolus clade and the neofavolus clade were separately treated as two distinct genera Favolus and Neofavolus; the polyporoid species in the lentinus clade with central and light-colored stipe and inflated hyphae were transferred into Lentinus, and the core polyporus clade was treated as Polyporus s. str. The squamosus clade contained species belonging to several different genera viz. Datronia, Datroniella, Echinochaete, Mycobonia, Neodatronia, Polyporus s. lat. and Pseudofavolus, but there are no enough efficient morphological evidence to combine all species in the squamosus Mycosphere 13(1): 1–52 (2022) www.mycosphere.org ISSN 2077 7019
期刊介绍:
Mycosphere stands as an international, peer-reviewed journal committed to the rapid dissemination of high-quality papers on fungal biology. Embracing an open-access approach, Mycosphere serves as a dedicated platform for the mycology community, ensuring swift publication of their valuable contributions. All submitted manuscripts undergo a thorough peer-review process before acceptance, with authors retaining copyright.
Key highlights of Mycosphere's publication include:
- Peer-reviewed manuscripts and monographs
- Open access, fostering accessibility and dissemination of knowledge
- Swift turnaround, facilitating timely sharing of research findings
- For information regarding open access charges, refer to the instructions for authors
- Special volumes, offering a platform for thematic collections and focused contributions.
Mycosphere is dedicated to promoting the accessibility and advancement of fungal biology through its inclusive and efficient publishing process.