Some refinements of real power form inequalities for convex functions via weak sub-majorization

Pub Date : 2023-01-01 DOI:10.7153/oam-2023-17-16
M. Ighachane, Mohammed Bouchangour
{"title":"Some refinements of real power form inequalities for convex functions via weak sub-majorization","authors":"M. Ighachane, Mohammed Bouchangour","doi":"10.7153/oam-2023-17-16","DOIUrl":null,"url":null,"abstract":". The main goal of this article, is to develop a general method for improving some new real power inequalities for convex and log-convex functions, which extends and uni fi es two recent and important results due to M. Sababheh [Linear Algebra Appl. 506 (2016), 588– 602] and D. Q. Huy et al. [Linear Algebra Appl. 656 (2023), 368–384]. Then by selecting some appropriate convex and log-convex functions, we obtain new mean inequalities for scalars and matrices, some new re fi nements and reverses of the Heinz and H¨older type inequalities for matrices. We get also some new and re fi ned trace and numerical radius inequalities. Mathematics","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2023-17-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. The main goal of this article, is to develop a general method for improving some new real power inequalities for convex and log-convex functions, which extends and uni fi es two recent and important results due to M. Sababheh [Linear Algebra Appl. 506 (2016), 588– 602] and D. Q. Huy et al. [Linear Algebra Appl. 656 (2023), 368–384]. Then by selecting some appropriate convex and log-convex functions, we obtain new mean inequalities for scalars and matrices, some new re fi nements and reverses of the Heinz and H¨older type inequalities for matrices. We get also some new and re fi ned trace and numerical radius inequalities. Mathematics
分享
查看原文
利用弱次多数构造凸函数的实幂不等式
. 本文的主要目标是开发一种改进凸函数和对数凸函数的一些新的实幂不等式的一般方法,该方法扩展并统一了M. Sababheh[线性代数应用,506(2016),588 - 602]和D. Q. Huy等人[线性代数应用,656(2023),368-384]最近的两个重要结果。然后,通过选择合适的凸函数和对数凸函数,我们得到了标量和矩阵的新的平均不等式,以及矩阵的Heinz型不等式和H¨older型不等式的一些新的修正和反演。我们还得到了一些新的和重新定义的迹和数值半径不等式。数学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信