Local isometries on subspaces and subalgebras of function spaces

IF 0.6 4区 数学 Q3 MATHEMATICS
Abdullah Bin Abu Baker, Rahul Maurya
{"title":"Local isometries on subspaces and subalgebras of function spaces","authors":"Abdullah Bin Abu Baker, Rahul Maurya","doi":"10.7153/oam-2022-16-02","DOIUrl":null,"url":null,"abstract":". Let K denotes the field of real or complex numbers. For a locally compact Hausdorff space X , we denote by C 0 ( X ) the space of all K -valued continuous functions on X vanishing at infinity. Let E be a (real or complex) Banach space, K E be a closed subset of E , and C u ( K E ) be the algebra of all real or complex valued, uniformly continuous bounded functions defined on K E . Endowed with the supremum norm, both C 0 ( X ) and C u ( K E ) are Banach spaces. In this paper we study the structure of local isometries on subspaces of C 0 ( X ) and various subalgebras of C u ( K E ) .","PeriodicalId":56274,"journal":{"name":"Operators and Matrices","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operators and Matrices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/oam-2022-16-02","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

. Let K denotes the field of real or complex numbers. For a locally compact Hausdorff space X , we denote by C 0 ( X ) the space of all K -valued continuous functions on X vanishing at infinity. Let E be a (real or complex) Banach space, K E be a closed subset of E , and C u ( K E ) be the algebra of all real or complex valued, uniformly continuous bounded functions defined on K E . Endowed with the supremum norm, both C 0 ( X ) and C u ( K E ) are Banach spaces. In this paper we study the structure of local isometries on subspaces of C 0 ( X ) and various subalgebras of C u ( K E ) .
函数空间的子空间和子代数上的局部等距
。设K表示实数或复数域。对于局部紧化的Hausdorff空间X,我们用c0 (X)表示X上所有K值连续函数在无穷远处消失的空间。设E是一个(实或复)巴拿赫空间,K E是E的一个封闭子集,C u (K E)是定义在K E上的所有实值或复值一致连续有界函数的代数。具有上范数的c0 (X)和cu (K E)都是Banach空间。本文研究了c0 (X)的子空间和cu (K)的各种子代数上的局部等距结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Operators and Matrices
Operators and Matrices 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
43
审稿时长
7 months
期刊介绍: ''Operators and Matrices'' (''OaM'') aims towards developing a high standard international journal which will publish top quality research and expository papers in matrix and operator theory and their applications. The journal will publish mainly pure mathematics, but occasionally papers of a more applied nature could be accepted. ''OaM'' will also publish relevant book reviews. ''OaM'' is published quarterly, in March, June, September and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信