Reduction of false positives at vessel bifurcations in computerized detection of lung nodules

Y. Nomura, M. Nemoto, Y. Masutani, S. Hanaoka, T. Yoshikawa, S. Miki, E. Maeda, N. Hayashi, N. Yoshioka, K. Ohtomo
{"title":"Reduction of false positives at vessel bifurcations in computerized detection of lung nodules","authors":"Y. Nomura, M. Nemoto, Y. Masutani, S. Hanaoka, T. Yoshikawa, S. Miki, E. Maeda, N. Hayashi, N. Yoshioka, K. Ohtomo","doi":"10.5430/JBGC.V4N3P36","DOIUrl":null,"url":null,"abstract":"Objective: We describe a new false positive (FP) reduction method based on surface features in our computerized detection system for lung nodules and evaluate the method using clinical chest computed tomography (CT) scans. Methods: In our detection method, nodule candidates are extracted using volumetric curvature-based thresholding and region growing. For various sizes of nodules, we adopt multiscale integration based on Hessian eigenvalues. For each nodule candidate, two surface features are calculated to differentiate nodules and FPs at vessel bifurcations. These features are fed into a quadratic classifier based on the Mahalanobis distance ratio. Results: In an experimental study involving 16 chest CT scans, the average number of FPs was reduced from 107.5 to 14.1 per case at 90% sensitivity. Conclusions: This proposed FP reduction method is effective in removing FPs at vessel bifurcations.","PeriodicalId":89580,"journal":{"name":"Journal of biomedical graphics and computing","volume":"4 1","pages":"36"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5430/JBGC.V4N3P36","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical graphics and computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5430/JBGC.V4N3P36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Objective: We describe a new false positive (FP) reduction method based on surface features in our computerized detection system for lung nodules and evaluate the method using clinical chest computed tomography (CT) scans. Methods: In our detection method, nodule candidates are extracted using volumetric curvature-based thresholding and region growing. For various sizes of nodules, we adopt multiscale integration based on Hessian eigenvalues. For each nodule candidate, two surface features are calculated to differentiate nodules and FPs at vessel bifurcations. These features are fed into a quadratic classifier based on the Mahalanobis distance ratio. Results: In an experimental study involving 16 chest CT scans, the average number of FPs was reduced from 107.5 to 14.1 per case at 90% sensitivity. Conclusions: This proposed FP reduction method is effective in removing FPs at vessel bifurcations.
减少肺结节计算机检测中血管分叉的假阳性
目的:我们描述了一种新的基于表面特征的肺结节计算机检测系统假阳性(FP)降低方法,并通过临床胸部计算机断层扫描(CT)评估该方法。方法:在我们的检测方法中,使用基于体积曲率的阈值分割和区域生长来提取候选结节。对于不同大小的结节,采用基于Hessian特征值的多尺度积分。对于每个候选结节,计算两个表面特征来区分结节和血管分叉处的FPs。将这些特征输入到基于马氏距离比的二次分类器中。结果:在一项涉及16个胸部CT扫描的实验研究中,在90%的灵敏度下,FPs的平均数量从107.5减少到14.1。结论:该方法可有效去除血管分叉处的FPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信