Semiclassical Gevrey operators in the complex domain

Pub Date : 2020-09-19 DOI:10.5802/aif.3546
M. Hitrik, R. Lascar, J. Sjoestrand, Maher Zerzeri
{"title":"Semiclassical Gevrey operators in the complex domain","authors":"M. Hitrik, R. Lascar, J. Sjoestrand, Maher Zerzeri","doi":"10.5802/aif.3546","DOIUrl":null,"url":null,"abstract":"We study semiclassical Gevrey pseudodifferential operators, acting on exponentially weighted spaces of entire holomorphic functions. The symbols of such operators are Gevrey functions defined on suitable I-Lagrangian submanifolds of the complexified phase space, which are extended almost holomorphically in the same Gevrey class, or in some larger space, to complex neighborhoods of these submanifolds. Using almost holomorphic extensions, we obtain uniformly bounded realizations of such operators on a natural scale of exponentially weighted spaces of holomorphic functions for all Gevrey indices, with remainders that are optimally small, provided that the Gevrey index is $\\leq 2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study semiclassical Gevrey pseudodifferential operators, acting on exponentially weighted spaces of entire holomorphic functions. The symbols of such operators are Gevrey functions defined on suitable I-Lagrangian submanifolds of the complexified phase space, which are extended almost holomorphically in the same Gevrey class, or in some larger space, to complex neighborhoods of these submanifolds. Using almost holomorphic extensions, we obtain uniformly bounded realizations of such operators on a natural scale of exponentially weighted spaces of holomorphic functions for all Gevrey indices, with remainders that are optimally small, provided that the Gevrey index is $\leq 2$.
分享
查看原文
复域上的半经典Gevrey算子
研究了作用于全纯函数的指数加权空间上的半经典Gevrey伪微分算子。这些算子的符号是定义在复相空间的合适的i - lagrange子流形上的Gevrey函数,这些函数在相同的Gevrey类中或在更大的空间中几乎全纯地扩展到这些子流形的复邻域。利用几乎全纯扩展,我们在全纯函数的指数加权空间的自然尺度上得到了这些算子的一致有界实现,对于所有的Gevrey指标,只要Gevrey指标为$\leq 2$,余数都是最优小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信