M. Hitrik, R. Lascar, J. Sjoestrand, Maher Zerzeri
{"title":"Semiclassical Gevrey operators in the complex domain","authors":"M. Hitrik, R. Lascar, J. Sjoestrand, Maher Zerzeri","doi":"10.5802/aif.3546","DOIUrl":null,"url":null,"abstract":"We study semiclassical Gevrey pseudodifferential operators, acting on exponentially weighted spaces of entire holomorphic functions. The symbols of such operators are Gevrey functions defined on suitable I-Lagrangian submanifolds of the complexified phase space, which are extended almost holomorphically in the same Gevrey class, or in some larger space, to complex neighborhoods of these submanifolds. Using almost holomorphic extensions, we obtain uniformly bounded realizations of such operators on a natural scale of exponentially weighted spaces of holomorphic functions for all Gevrey indices, with remainders that are optimally small, provided that the Gevrey index is $\\leq 2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We study semiclassical Gevrey pseudodifferential operators, acting on exponentially weighted spaces of entire holomorphic functions. The symbols of such operators are Gevrey functions defined on suitable I-Lagrangian submanifolds of the complexified phase space, which are extended almost holomorphically in the same Gevrey class, or in some larger space, to complex neighborhoods of these submanifolds. Using almost holomorphic extensions, we obtain uniformly bounded realizations of such operators on a natural scale of exponentially weighted spaces of holomorphic functions for all Gevrey indices, with remainders that are optimally small, provided that the Gevrey index is $\leq 2$.