Radial rapid decay does not imply rapid decay

Pub Date : 2020-06-25 DOI:10.5802/aif.3552
A. Boyer, Antoine Pinochet Lobos, C. Pittet
{"title":"Radial rapid decay does not imply rapid decay","authors":"A. Boyer, Antoine Pinochet Lobos, C. Pittet","doi":"10.5802/aif.3552","DOIUrl":null,"url":null,"abstract":"We provide a new, dynamical criterion for the radial rapid decay property. We work out in detail the special case of the group $\\Gamma := \\mathbf{SL}_2(A)$, where $A := \\mathbb{F}_q[X,X^{-1}]$ is the ring of Laurent polynomials with coefficients in $\\mathbb{F}_q$, endowed with the length function coming from a natural action of $\\Gamma$ on a product of two trees, to show that is has the radial rapid decay (RRD) property and doesn't have the rapid decay (RD) property. The criterion also applies to irreducible lattices in semisimple Lie groups with finite center endowed with a length function defined with the help of a Finsler metric. These examples answer a question asked by Chatterji and moreover show that, unlike the RD property, the RRD property isn't inherited by open subgroups.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a new, dynamical criterion for the radial rapid decay property. We work out in detail the special case of the group $\Gamma := \mathbf{SL}_2(A)$, where $A := \mathbb{F}_q[X,X^{-1}]$ is the ring of Laurent polynomials with coefficients in $\mathbb{F}_q$, endowed with the length function coming from a natural action of $\Gamma$ on a product of two trees, to show that is has the radial rapid decay (RRD) property and doesn't have the rapid decay (RD) property. The criterion also applies to irreducible lattices in semisimple Lie groups with finite center endowed with a length function defined with the help of a Finsler metric. These examples answer a question asked by Chatterji and moreover show that, unlike the RD property, the RRD property isn't inherited by open subgroups.
分享
查看原文
径向快速衰变并不意味着快速衰变
我们提供了一个新的径向快速衰减特性的动力学判据。我们详细计算了群$\Gamma:= \mathbf{SL}_2(A)$的特殊情况,其中$A:= \mathbb{F}_q[X,X^{-1}]$是系数在$\mathbb{F}_q$的洛朗多项式环,其长度函数是由$\Gamma$对两树积的自然作用而来,表明它具有径向快速衰减(RRD)性质而不具有快速衰减(RD)性质。该准则也适用于中心有限的半单李群中的不可约格,该群具有由Finsler度规定义的长度函数。这些例子回答了Chatterji提出的一个问题,而且还表明,与RD属性不同,RRD属性不会被开放子组继承。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信