Some notes on Jensen-Mercer's type inequalities; extensions and refinements with applications

IF 0.9 4区 数学 Q2 MATHEMATICS
L. Horváth
{"title":"Some notes on Jensen-Mercer's type inequalities; extensions and refinements with applications","authors":"L. Horváth","doi":"10.7153/mia-2021-24-76","DOIUrl":null,"url":null,"abstract":". In this paper we study inequalities corresponding to Jensen-Mercer’s inequality. Some new extensions of Niezgoda’s inequality and the integral version of Jensen-Mercer’s inequality are given. The obtained inequalities do not only generalize the former ones, but our proofs are natural and simple. They clearly show the structure of such inequalities: they consist of two parts, a discrete or integral Jensen’s inequality and then a majorization type inequality. An- other purpose of the paper is to provide a deeper understanding of the methods used to re fi ne Jensen-Mercer’s and the corresponding inequalities. Moreover, some new re fi nements of these inequalities are obtained. Finally, some applications related to Fej´er’s and Hermite-Hadamard inequalities are given.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-76","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

. In this paper we study inequalities corresponding to Jensen-Mercer’s inequality. Some new extensions of Niezgoda’s inequality and the integral version of Jensen-Mercer’s inequality are given. The obtained inequalities do not only generalize the former ones, but our proofs are natural and simple. They clearly show the structure of such inequalities: they consist of two parts, a discrete or integral Jensen’s inequality and then a majorization type inequality. An- other purpose of the paper is to provide a deeper understanding of the methods used to re fi ne Jensen-Mercer’s and the corresponding inequalities. Moreover, some new re fi nements of these inequalities are obtained. Finally, some applications related to Fej´er’s and Hermite-Hadamard inequalities are given.
关于Jensen-Mercer类型不等式的几点注释应用程序的扩展和改进
。本文研究了与Jensen-Mercer不等式相对应的不等式。给出了Niezgoda不等式和Jensen-Mercer不等式的积分版的一些新的推广。所得到的不等式不仅推广了先前的不等式,而且证明是自然而简单的。它们清楚地显示了这种不等式的结构:它们由两个部分组成,一个是离散的或积分的Jensen不等式,另一个是多数化型不等式。本文的另一个目的是提供对用于重新定义Jensen-Mercer不等式和相应不等式的方法的更深入的理解。此外,还得到了这些不等式的一些新的证明。最后给出了Fej´er不等式和Hermite-Hadamard不等式的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信