A multilinear Rellich inequality

IF 0.9 4区 数学 Q2 MATHEMATICS
D. Edmunds, A. Meskhi
{"title":"A multilinear Rellich inequality","authors":"D. Edmunds, A. Meskhi","doi":"10.7153/MIA-2021-24-19","DOIUrl":null,"url":null,"abstract":". We prove a multilinear variant of the Rellich inequality on the real line. In particular, we establish the weighted inequality with a positive function w on ( 0 , b − a )) , where − ∞ (cid:2) a < b (cid:2) + ∞ , m is a positive integer, δ ( x ) = min { x − a , b − x } is the distance function on ( a , b ) , and 1 / p = ∑ mj = 1 1 / p j , p j > 1, j = 1 ,..., m . As a corollary we derive the following estimate b Mathematics subject classi fi cation (2010): 26A42, 35A22, 35A23.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/MIA-2021-24-19","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. We prove a multilinear variant of the Rellich inequality on the real line. In particular, we establish the weighted inequality with a positive function w on ( 0 , b − a )) , where − ∞ (cid:2) a < b (cid:2) + ∞ , m is a positive integer, δ ( x ) = min { x − a , b − x } is the distance function on ( a , b ) , and 1 / p = ∑ mj = 1 1 / p j , p j > 1, j = 1 ,..., m . As a corollary we derive the following estimate b Mathematics subject classi fi cation (2010): 26A42, 35A22, 35A23.
一个多线性Rellich不等式
。在实线上证明了Rellich不等式的一个多线性变型。特别是,我们与积极建立加权不等式函数w (0, b−)),在−∞(cid: 2) < b (cid: 2) +∞,m是一个正整数,δ(x) =分钟{x−a, b−x}是距离函数(a、b),和1 / p =∑mj = 1 1 / p j, p j > 1, j = 1,……, m。根据数学学科分类(2010),我们得出如下估计:26A42, 35A22, 35A23。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信