Maximal values of symmetric functions in distances between points

IF 0.9 4区 数学 Q2 MATHEMATICS
A. Dubickas
{"title":"Maximal values of symmetric functions in distances between points","authors":"A. Dubickas","doi":"10.7153/mia-2020-23-25","DOIUrl":null,"url":null,"abstract":"In this note we find the maximal values of several symmetric functions in the variables which are the squares of distances |zi − z j| , 1 i < j d , between some d complex points z1, . . . ,zd in the unit disc. We compute the maximums of σm , for m = 1,2,3,4 , explicitly and find the conditions on z1, . . . ,zd under which those maximal values are attained. This problem is motivated by an inequality of Cassels (1966) and a subsequent conjecture of Alexander. Mathematics subject classification (2010): 52A40, 11R06.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":"1 1","pages":"329-339"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-25","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note we find the maximal values of several symmetric functions in the variables which are the squares of distances |zi − z j| , 1 i < j d , between some d complex points z1, . . . ,zd in the unit disc. We compute the maximums of σm , for m = 1,2,3,4 , explicitly and find the conditions on z1, . . . ,zd under which those maximal values are attained. This problem is motivated by an inequality of Cassels (1966) and a subsequent conjecture of Alexander. Mathematics subject classification (2010): 52A40, 11R06.
点间距离对称函数的最大值
在这篇文章中,我们找到了几个对称函数的最大值,这些变量是距离的平方|zi - z j|, 1 i < j d,在一些d个复点z1,…之间。,单位圆盘中的zd。我们显式地计算了m = 1,2,3,4时σm的最大值,并找到了z1,…的条件。,zd,在此条件下达到最大值。这个问题是由Cassels(1966)的一个不等式和Alexander随后的一个猜想引起的。数学学科分类(2010):52A40, 11R06。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
10.00%
发文量
59
审稿时长
6-12 weeks
期刊介绍: ''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信