Fermi-Walker Parallel Transport According to Quasi Frame in Three Dimensional Minkowski Space

IF 0.5 Q4 PHYSICS, MATHEMATICAL
N. Gürbüz, D. Yoon
{"title":"Fermi-Walker Parallel Transport According to Quasi Frame in Three Dimensional Minkowski Space","authors":"N. Gürbüz, D. Yoon","doi":"10.7546/jgsp-54-2019-1-12","DOIUrl":null,"url":null,"abstract":"A relativistic observer ξ needs reference frames in order to measure the movement and position of a object. If ξ is free falling, its restspaces are transported with LeviCivita parallelism. For accelerated observes, the restspaces are not transported by the Levi-Civita parallelism. In this case Fermi-Walker parallelism is used to define constant directions. Fermi-Walker parallelism is an isometry between the tangent spaces along relativistic observer ξ. [6, 11]. Balakrishnan et al investigated time evolutions of the space curve associated with a geometric phase using Fermi-Walker parallel transport in three dimensional Euclidean space [2]. Gürbüz had introduced new geometric phases according three classes of a curve evolution in Minkowski space [7, 8]. Usual Fermi-Walker parallel derivative for any vector field A is given with respect to Frenet frame {t, n, b} in three dimensional Euclidean space as following (cf. [9]) DfA Dfs = dA","PeriodicalId":43078,"journal":{"name":"Journal of Geometry and Symmetry in Physics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Symmetry in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/jgsp-54-2019-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A relativistic observer ξ needs reference frames in order to measure the movement and position of a object. If ξ is free falling, its restspaces are transported with LeviCivita parallelism. For accelerated observes, the restspaces are not transported by the Levi-Civita parallelism. In this case Fermi-Walker parallelism is used to define constant directions. Fermi-Walker parallelism is an isometry between the tangent spaces along relativistic observer ξ. [6, 11]. Balakrishnan et al investigated time evolutions of the space curve associated with a geometric phase using Fermi-Walker parallel transport in three dimensional Euclidean space [2]. Gürbüz had introduced new geometric phases according three classes of a curve evolution in Minkowski space [7, 8]. Usual Fermi-Walker parallel derivative for any vector field A is given with respect to Frenet frame {t, n, b} in three dimensional Euclidean space as following (cf. [9]) DfA Dfs = dA
三维闵可夫斯基空间中准坐标系下的费米-沃克平行输运
一个相对论观察者ξ需要参考系来测量一个物体的运动和位置。如果ξ是自由落体的,则其剩余空间以列维维塔平行度传输。对于加速观测,静止空间不受列维-奇维塔平行度的传输。在这种情况下,费米-沃克平行度被用来定义恒定方向。费米-沃克平行度是沿相对论观察者ξ的切空间之间的等距。(6, 11)。Balakrishnan等人利用三维欧几里得空间[2]中的费米-沃克平行输运研究了与几何相位相关的空间曲线的时间演化。g rb z根据Minkowski空间中曲线演化的三类引入了新的几何相[7,8]。通常在三维欧几里德空间中,任意向量场A对Frenet坐标系{t, n, b}的费米-沃克平行导数如下(cf. [9]) DfA Dfs = dA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
25.00%
发文量
3
期刊介绍: The Journal of Geometry and Symmetry in Physics is a fully-refereed, independent international journal. It aims to facilitate the rapid dissemination, at low cost, of original research articles reporting interesting and potentially important ideas, and invited review articles providing background, perspectives, and useful sources of reference material. In addition to such contributions, the journal welcomes extended versions of talks in the area of geometry of classical and quantum systems delivered at the annual conferences on Geometry, Integrability and Quantization in Bulgaria. An overall idea is to provide a forum for an exchange of information, ideas and inspiration and further development of the international collaboration. The potential authors are kindly invited to submit their papers for consideraion in this Journal either to one of the Associate Editors listed below or to someone of the Editors of the Proceedings series whose expertise covers the research topic, and with whom the author can communicate effectively, or directly to the JGSP Editorial Office at the address given below. More details regarding submission of papers can be found by clicking on "Notes for Authors" button above. The publication program foresees four quarterly issues per year of approximately 128 pages each.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信