Reduced graphene oxide as efficient carbon support for Pd-based ethanol oxidation catalysts in alkaline media

IF 2.9 Q2 ELECTROCHEMISTRY
Sigrid Wolf, Michaela Roschger, Boštjan Genorio, N. Hodnik, Matija Gatalo, F. Ruiz-Zepeda, V. Hacker
{"title":"Reduced graphene oxide as efficient carbon support for Pd-based ethanol oxidation catalysts in alkaline media","authors":"Sigrid Wolf, Michaela Roschger, Boštjan Genorio, N. Hodnik, Matija Gatalo, F. Ruiz-Zepeda, V. Hacker","doi":"10.5599/jese.1643","DOIUrl":null,"url":null,"abstract":"The sluggish kinetics of the ethanol oxidation reaction (EOR) and the related development of low-cost, highly active and stable anode catalysts still remains the major challenge in alkaline direct ethanol fuel cells (ADEFCs). In this respect, we synthesized a PdNiBi nanocatalyst on reduced graphene oxide (rGO) via a facile synthesis method. The prepared composite catalyst was physicochemically characterized by SEM, STEM, EDX, ICP-OES and XRD to analyze the morphology, particle distribution and size, elemental composition and structure. The electrochemical activity and stability towards EOR in alkaline media were examined using the thin-film rotating disk electrode technique. The results reveal well-dispersed and strongly anchored nanoparticles on the rGO support, providing abundant active sites. The PdNiBi/rGO presents a higher EOR activity and stability compared to a commercial Pd/C ascribed to a high ECSA and synergistic effects between Pd, Ni and Bi and the rGO material. These findings suggest PdNiBi/rGO as a promising anode catalyst in ADEFC applications.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

The sluggish kinetics of the ethanol oxidation reaction (EOR) and the related development of low-cost, highly active and stable anode catalysts still remains the major challenge in alkaline direct ethanol fuel cells (ADEFCs). In this respect, we synthesized a PdNiBi nanocatalyst on reduced graphene oxide (rGO) via a facile synthesis method. The prepared composite catalyst was physicochemically characterized by SEM, STEM, EDX, ICP-OES and XRD to analyze the morphology, particle distribution and size, elemental composition and structure. The electrochemical activity and stability towards EOR in alkaline media were examined using the thin-film rotating disk electrode technique. The results reveal well-dispersed and strongly anchored nanoparticles on the rGO support, providing abundant active sites. The PdNiBi/rGO presents a higher EOR activity and stability compared to a commercial Pd/C ascribed to a high ECSA and synergistic effects between Pd, Ni and Bi and the rGO material. These findings suggest PdNiBi/rGO as a promising anode catalyst in ADEFC applications.
还原氧化石墨烯作为碱性介质中pd基乙醇氧化催化剂的高效碳载体
乙醇氧化反应(EOR)的缓慢动力学以及与之相关的低成本、高活性和稳定的阳极催化剂的开发仍然是碱性直接乙醇燃料电池(ADEFCs)面临的主要挑战。在这方面,我们通过简单的合成方法在还原氧化石墨烯(rGO)上合成了PdNiBi纳米催化剂。采用SEM、STEM、EDX、ICP-OES和XRD等手段对制备的复合催化剂进行了物理化学表征,分析了催化剂的形貌、颗粒分布和大小、元素组成和结构。采用薄膜旋转圆盘电极技术考察了其在碱性介质中的电化学活性和提高采收率的稳定性。结果表明,纳米颗粒在氧化石墨烯载体上分散良好,具有很强的锚定性,提供了丰富的活性位点。与商业Pd/C相比,PdNiBi/rGO具有更高的EOR活性和稳定性,这归功于高ECSA以及Pd、Ni和Bi与rGO材料之间的协同效应。这些发现表明PdNiBi/rGO是一种很有前途的阳极催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信