Some novel analysis on two different Caputo-type fractional-order boundary value problems

Q1 Mathematics
Zouaoui Bekri, V. S. Ertürk, Pushpendra Kumar
{"title":"Some novel analysis on two different Caputo-type fractional-order boundary value problems","authors":"Zouaoui Bekri, V. S. Ertürk, Pushpendra Kumar","doi":"10.53006/rna.1114063","DOIUrl":null,"url":null,"abstract":"Nowadays, a number of classical order results are being analyzed in \nthe sense of fractional derivatives. In this research work, we \ndiscuss two different boundary value problems. In the first half of \nthe paper, we generalize an integer-order boundary value problem \ninto fractional-order and then we demonstrate the existence and \nuniqueness of the solution subject to the Caputo fractional \nderivative. First, we recall some results and then justify our main \nresults with the proofs of the given theorems. We conclude our \nresults by presenting an illustrative example. In the other half of \nthe paper, we extend the Banach's contraction theorem to prove the \nexistence and uniqueness of the solution to a sequential Caputo \nfractional-order boundary value problem.","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.1114063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, a number of classical order results are being analyzed in the sense of fractional derivatives. In this research work, we discuss two different boundary value problems. In the first half of the paper, we generalize an integer-order boundary value problem into fractional-order and then we demonstrate the existence and uniqueness of the solution subject to the Caputo fractional derivative. First, we recall some results and then justify our main results with the proofs of the given theorems. We conclude our results by presenting an illustrative example. In the other half of the paper, we extend the Banach's contraction theorem to prove the existence and uniqueness of the solution to a sequential Caputo fractional-order boundary value problem.
两种不同caputo型分数阶边值问题的新分析
目前,人们正从分数阶导数的意义上分析许多经典的阶结果。在本研究中,我们讨论了两种不同的边值问题。在本文的前半部分,我们将一个整阶边值问题推广到分数阶边值问题上,并证明了该问题的Caputo分数阶导数解的存在唯一性。首先,我们回顾一些结果,然后用给定定理的证明来证明我们的主要结果。我们通过举一个例子来总结我们的结果。在论文的另一部分,我们推广了Banach的收缩定理,证明了一类序列Caputo分数阶边值问题解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Nonlinear Analysis
Results in Nonlinear Analysis Mathematics-Mathematics (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
34
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信