M. Petronis, R. Trujillo, J. Lindline, J. Zebrowski
{"title":"Paleomagnetic Data Bearing on Vertical Axis Rotation of the Rio del Oso dike swarm, Western Espa�ola Basin, New Mexico","authors":"M. Petronis, R. Trujillo, J. Lindline, J. Zebrowski","doi":"10.58799/nmg-v42n2.61","DOIUrl":null,"url":null,"abstract":"The Española Basin is one of a series of interconnected, asymmetrical basins in the Rio Grande rift that includes a number of northand northeast-striking faults that accommodated block tilting and basin subsidence. The western margin of the Española Basin, in particular, is characterized by a greater than 17-km wide zone of normal and oblique-slip faults. To clarify the involvement of block rotation in the tectonic evolution of the Española Basin, we carried out a paleomagnetic study of mafic intrusions (Rio del Oso dike swarm) that are genetically related to regionally extensive basalt flows of the mid-Miocene Lobato Formation. The primary hypothesis tested was that these intrusions experienced some degree of vertical axis rotation associated with mid-Miocene to recent continental rifting. In situ paleomagnetic results from forty-two sites yield a group mean declination (D) of 344.0°, an inclination (I) of 41.1°, α95 of 6.1°, and k of 14.1. The group mean result is discordant to the <10 Ma pole of D=356.0°, I=54.4°, α95 = 3.3° with a statistically significant inferred rotation (R) of -12.0°± 7.2° and flattening of +13.3° ± 5.5° relative to the <10 Ma pole field direction. These discordant results indicate that a modest degree of counter-clockwise vertical axis rotation occurred in this region, which is likely associated with Rio Grande rifting north of the Jemez Mountains. It is possible that oblique motion along the Santa Clara fault and/ or the Cañada del Almagre fault facilitated the vertical axis rotation. The results from this study imply that vertical axis rotation is common to extensional rift systems and should be considered when modeling continental extension.","PeriodicalId":35824,"journal":{"name":"New Mexico Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Mexico Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58799/nmg-v42n2.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The Española Basin is one of a series of interconnected, asymmetrical basins in the Rio Grande rift that includes a number of northand northeast-striking faults that accommodated block tilting and basin subsidence. The western margin of the Española Basin, in particular, is characterized by a greater than 17-km wide zone of normal and oblique-slip faults. To clarify the involvement of block rotation in the tectonic evolution of the Española Basin, we carried out a paleomagnetic study of mafic intrusions (Rio del Oso dike swarm) that are genetically related to regionally extensive basalt flows of the mid-Miocene Lobato Formation. The primary hypothesis tested was that these intrusions experienced some degree of vertical axis rotation associated with mid-Miocene to recent continental rifting. In situ paleomagnetic results from forty-two sites yield a group mean declination (D) of 344.0°, an inclination (I) of 41.1°, α95 of 6.1°, and k of 14.1. The group mean result is discordant to the <10 Ma pole of D=356.0°, I=54.4°, α95 = 3.3° with a statistically significant inferred rotation (R) of -12.0°± 7.2° and flattening of +13.3° ± 5.5° relative to the <10 Ma pole field direction. These discordant results indicate that a modest degree of counter-clockwise vertical axis rotation occurred in this region, which is likely associated with Rio Grande rifting north of the Jemez Mountains. It is possible that oblique motion along the Santa Clara fault and/ or the Cañada del Almagre fault facilitated the vertical axis rotation. The results from this study imply that vertical axis rotation is common to extensional rift systems and should be considered when modeling continental extension.
期刊介绍:
New Mexico Geology is a quarterly, peer-reviewed journal available by subscription. Articles of original research are generally less than 10,000 words in length and pertain to the geology of New Mexico and neighboring states, primarily for an audience of professional geologists or those with an interest in the geologic story behind the landscape. The journal also publishes abstracts from regional meetings, theses, and dissertations (NM schools), descriptions of new publications, book reviews, and upcoming meetings. Research papers, short articles, and abstracts from selected back issues of New Mexico Geology are now available as free downloads in PDF format. Back issues are also available in hard copy for a nominal fee.