The bounds of eigenvalue for complex singular boundary value problems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fu Sun, Xiao ue Han
{"title":"The bounds of eigenvalue for complex singular boundary value problems","authors":"Fu Sun, Xiao ue Han","doi":"10.7153/jmi-2023-17-09","DOIUrl":null,"url":null,"abstract":". The present paper deals with “the perturbation of Legendre eigenvalue problem” with limit-circle type non-oscillation endpoints. The dissipative operators in limit-circle case are studied. Lower bounds on the real parts of all eigenvalues and the upper bounds on the imaginary parts of the non-real eigenvalues for this eigenvalue problem associated to a special separated boundary condition (see the below in ( ?? )) are obtained through a new method, partly inspired by the estimates obtained in Sun and Qi (Proc. Roy. Soc. Edinburgh A, 150:2607-2619, 2020).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2023-17-09","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

. The present paper deals with “the perturbation of Legendre eigenvalue problem” with limit-circle type non-oscillation endpoints. The dissipative operators in limit-circle case are studied. Lower bounds on the real parts of all eigenvalues and the upper bounds on the imaginary parts of the non-real eigenvalues for this eigenvalue problem associated to a special separated boundary condition (see the below in ( ?? )) are obtained through a new method, partly inspired by the estimates obtained in Sun and Qi (Proc. Roy. Soc. Edinburgh A, 150:2607-2619, 2020).
复奇异边值问题的特征值界
。本文讨论了具有极限圆型非振荡端点的“勒让德特征值问题的摄动”。研究了极限环情况下的耗散算子。所有特征值的实部下界和非实特征值的虚部上界与一个特殊的分离边界条件相关联的特征值问题(见下面的(?? ?)))是通过一种新方法得到的,部分灵感来自Sun和Qi (Proc. Roy)的估计。Soc。吉林大学学报(自然科学版),2016)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信