Approximation properties of the Riemann-Liouville fractional integral type Szász-Mirakyan-Kantorovich operators

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nazim Mahhmudov, M. Kara
{"title":"Approximation properties of the Riemann-Liouville fractional integral type Szász-Mirakyan-Kantorovich operators","authors":"Nazim Mahhmudov, M. Kara","doi":"10.7153/jmi-2022-16-86","DOIUrl":null,"url":null,"abstract":". In the present paper, we introduce the Riemann-Liouville fractional integral type Sz´asz- Mirakyan-Kantorovich operators. We investigate the order of convergence by using Lipschitz-type maximal functions, second order modulus of smoothness and Peetre’s K-functional. Weigh- ted approximation properties of these operators in terms of modulus of continuity have been dis-cussed. Then, Vorononskaja-type type theorem are obtained. Moreover, bivariate the Riemann- Liouville fractional integral type Sz´asz-Mirakyan-Kantorovich operators are constructed. The last section is devoted to graphical representation and numerical results for these operators.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2022-16-86","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

. In the present paper, we introduce the Riemann-Liouville fractional integral type Sz´asz- Mirakyan-Kantorovich operators. We investigate the order of convergence by using Lipschitz-type maximal functions, second order modulus of smoothness and Peetre’s K-functional. Weigh- ted approximation properties of these operators in terms of modulus of continuity have been dis-cussed. Then, Vorononskaja-type type theorem are obtained. Moreover, bivariate the Riemann- Liouville fractional integral type Sz´asz-Mirakyan-Kantorovich operators are constructed. The last section is devoted to graphical representation and numerical results for these operators.
Riemann-Liouville分数积分型Szász-Mirakyan-Kantorovich算子的近似性质
。本文引入了Riemann-Liouville分数阶积分型Sz´asz- Mirakyan-Kantorovich算子。利用lipschitz型极大函数、二阶光滑模和Peetre的k泛函研究了收敛的阶数。讨论了这些算子在连续模方面的加权逼近性质。然后,得到了vorononskaja型型定理。此外,构造了二元Riemann- Liouville分数积分型Sz´asz-Mirakyan-Kantorovich算子。最后一节专门讨论这些运算符的图形表示和数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信