Optimal Lehmer mean bounds for the $n$th power-type Toader means of n=-1,1,3

IF 1.1 3区 数学 Q1 MATHEMATICS
Tie-hong Zhao, Hong-Hu Chu, Yuming Chu
{"title":"Optimal Lehmer mean bounds for the $n$th power-type Toader means of n=-1,1,3","authors":"Tie-hong Zhao, Hong-Hu Chu, Yuming Chu","doi":"10.7153/jmi-2022-16-12","DOIUrl":null,"url":null,"abstract":"In the article, we prove that λ1 = 0 , μ1 = 5/8 , λ2 = −1/8 , μ2 = 0 , λ3 = −1 and μ3 = −7/8 are the best possible parameters such that the double inequalities Lλ1 (a,b) < T3(a,b) < Lμ1 (a,b), Lλ2 (a,b) < T1(a,b) < Lμ2 (a,b), Lλ3 (a,b) < T−1(a,b) < Lμ3 (a,b) hold for a,b > 0 with a = b , and provide new bounds for the complete elliptic integral of the second kind E (r) = ∫ π/2 0 (1− r2 sin2 θ )1/2dθ on the interval (0,1) , where Lp(a,b) = (ap+1 + bp+1)/(ap +bp) is the p -th Lehmer mean and Tn(a,b) = ( 2 π ∫ π/2 0 √ an cos2 θ +bn sin2 θdθ )2/n is the n th power-type Toader mean. Mathematics subject classification (2020): 26E60, 33E05.","PeriodicalId":49165,"journal":{"name":"Journal of Mathematical Inequalities","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Inequalities","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2022-16-12","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

Abstract

In the article, we prove that λ1 = 0 , μ1 = 5/8 , λ2 = −1/8 , μ2 = 0 , λ3 = −1 and μ3 = −7/8 are the best possible parameters such that the double inequalities Lλ1 (a,b) < T3(a,b) < Lμ1 (a,b), Lλ2 (a,b) < T1(a,b) < Lμ2 (a,b), Lλ3 (a,b) < T−1(a,b) < Lμ3 (a,b) hold for a,b > 0 with a = b , and provide new bounds for the complete elliptic integral of the second kind E (r) = ∫ π/2 0 (1− r2 sin2 θ )1/2dθ on the interval (0,1) , where Lp(a,b) = (ap+1 + bp+1)/(ap +bp) is the p -th Lehmer mean and Tn(a,b) = ( 2 π ∫ π/2 0 √ an cos2 θ +bn sin2 θdθ )2/n is the n th power-type Toader mean. Mathematics subject classification (2020): 26E60, 33E05.
第n次幂型Toader均值n=-1,1,3的最优Lehmer均值界
在这篇文章中,我们证明λ1 = 0,μ1 = 5/8,λ2 =−1/8,μ2 = 0,λ3 =−1和μ3 =−7/8是最好的参数,这样双重的不平等Lλ1 (a, b) < T3 (a, b) < Lμ1 (a、b), Lλ2 (a, b) < T1 (a, b) < Lμ2 (a, b), Lλ3 (a, b) < T−1 (a, b) < Lμ3 (a, b)保持b > 0 = b,并提供完整的新界限第二类椭圆积分E (r) =∫π/ 2 0(1−r2 sin2θ)dθ的间隔(0,1),其中Lp(a,b) = (ap+1 +bp +1)/(ap +bp)为p - Lehmer均值,Tn(a,b) = (2 π∫π/2 0√and cos2 θ +bn sin2 θdθ)2/n为n次幂型Toader均值。数学学科分类(2020):26E60, 33E05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Inequalities
Journal of Mathematical Inequalities MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.90
自引率
3.40%
发文量
56
审稿时长
6-12 weeks
期刊介绍: The ''Journal of Mathematical Inequalities'' (''JMI'') presents carefully selected original research articles from all areas of pure and applied mathematics, provided they are concerned with mathematical inequalities and their numerous applications. ''JMI'' will also periodically publish invited survey articles and short notes with interesting results treating the theory of inequalities, as well as relevant book reviews. Only articles written in the English language and in a lucid, expository style will be considered for publication. ''JMI'' primary audience are pure mathematicians, applied mathemathicians and numerical analysts. ''JMI'' is published quarterly; in March, June, September, and December.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信