Some further properties of discrete Muckenhoupt and Gehring weights

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Saker, M. Krnic, D. Baleanu
{"title":"Some further properties of discrete Muckenhoupt and Gehring weights","authors":"S. Saker, M. Krnic, D. Baleanu","doi":"10.7153/jmi-2022-16-01","DOIUrl":null,"url":null,"abstract":"Abstract. The main objective of this paper is a further study of discrete Muckenhoupt and Gehring weights. We first restate monotonicity properties of Muckenhoupt and Gehring classes in terms of the corresponding norms. In addition, we establish some norm bounds for Muckenhoupt and Gehring weights. Next, we give a simple characterization of the weight belonging to both Muckenhoupt and Gehring class. Finally, we show that the transition functions, arising from inclusion problems between Muckenhoupt and Gehring classes, are decreasing. As an application, some particular examples of Muckenhoupt and Gehring power weights are also considered.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/jmi-2022-16-01","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. The main objective of this paper is a further study of discrete Muckenhoupt and Gehring weights. We first restate monotonicity properties of Muckenhoupt and Gehring classes in terms of the corresponding norms. In addition, we establish some norm bounds for Muckenhoupt and Gehring weights. Next, we give a simple characterization of the weight belonging to both Muckenhoupt and Gehring class. Finally, we show that the transition functions, arising from inclusion problems between Muckenhoupt and Gehring classes, are decreasing. As an application, some particular examples of Muckenhoupt and Gehring power weights are also considered.
离散Muckenhoupt权和Gehring权的进一步性质
摘要本文的主要目的是进一步研究离散Muckenhoupt权值和Gehring权值。我们首先用相应的范数重申了Muckenhoupt类和Gehring类的单调性。此外,我们建立了Muckenhoupt权值和Gehring权值的范数界。接下来,我们给出了Muckenhoupt类和Gehring类权重的简单表征。最后,我们表明,由于Muckenhoupt和Gehring类之间的包含问题而引起的过渡函数正在减小。作为应用,还考虑了Muckenhoupt和Gehring功率权重的一些具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信