Infinitesimal bending of curves on the ruled surfaces

Marija S. Najdanovic, L. Velimirović
{"title":"Infinitesimal bending of curves on the ruled surfaces","authors":"Marija S. Najdanovic, L. Velimirović","doi":"10.5937/UNIVTHO8-17403","DOIUrl":null,"url":null,"abstract":"In this paper we study infinitesimal bending of curves that lie on the ruled surfaces in Euclidean 3-dimensional space. We obtain an infinitesimal bending field under whose effect all bent curves remain on the same ruled surface as the initial curve. Specially, we consider infinitesimal bending of the curves which belong to the cylinder as well as to the hyperbolic paraboloid and find corresponding infinitesimal bending fields. We examine the variation of the curvature of a curve under infinitesimal bending on the hyperbolic paraboloid. Some examples are visualized using program packet Mathematica.","PeriodicalId":22896,"journal":{"name":"The University Thought - Publication in Natural Sciences","volume":"8 1","pages":"46-51"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The University Thought - Publication in Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/UNIVTHO8-17403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we study infinitesimal bending of curves that lie on the ruled surfaces in Euclidean 3-dimensional space. We obtain an infinitesimal bending field under whose effect all bent curves remain on the same ruled surface as the initial curve. Specially, we consider infinitesimal bending of the curves which belong to the cylinder as well as to the hyperbolic paraboloid and find corresponding infinitesimal bending fields. We examine the variation of the curvature of a curve under infinitesimal bending on the hyperbolic paraboloid. Some examples are visualized using program packet Mathematica.
曲线在直纹表面上的微小弯曲
本文研究了欧几里德三维空间中直纹曲面上曲线的无穷小弯曲问题。我们得到了一个无穷小弯曲场,在其作用下,所有弯曲曲线都保持在与初始曲线相同的直纹表面上。特别地,我们考虑了圆柱曲线和双曲抛物面曲线的无穷小弯曲,并找到了相应的无穷小弯曲场。研究了双曲抛物面无穷小弯曲下曲线曲率的变化。用Mathematica程序包对一些例子进行了可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信