A. Scheffler, A. Dickinson, Charlotte DiStefano, S. Jeste, D. Şentürk
{"title":"Covariate-adjusted hybrid principal components analysis for region-referenced functional EEG data.","authors":"A. Scheffler, A. Dickinson, Charlotte DiStefano, S. Jeste, D. Şentürk","doi":"10.4310/21-sii712","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) studies produce region-referenced functional data via EEG signals recorded across scalp electrodes. The high-dimensional data can be used to contrast neurodevelopmental trajectories between diagnostic groups, for example between typically developing (TD) children and children with autism spectrum disorder (ASD). Valid inference requires characterization of the complex EEG dependency structure as well as covariate-dependent heteroscedasticity, such as changes in variation over developmental age. In our motivating study, EEG data is collected on TD and ASD children aged two to twelve years old. The peak alpha frequency, a prominent peak in the alpha spectrum, is a biomarker linked to neurodevelopment that shifts as children age. To retain information, we model patterns of alpha spectral variation, rather than just the peak location, regionally across the scalp and chronologically across development. We propose a covariate-adjusted hybrid principal components analysis (CA-HPCA) for EEG data, which utilizes both vector and functional principal components analysis while simultaneously adjusting for covariate-dependent heteroscedasticity. CA-HPCA assumes the covariance process is weakly separable conditional on observed covariates, allowing for covariate-adjustments to be made on the marginal covariances rather than the full covariance leading to stable and computationally efficient estimation. The proposed methodology provides novel insights into neurodevelopmental differences between TD and ASD children.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"15 2 1","pages":"209-223"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/21-sii712","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Electroencephalography (EEG) studies produce region-referenced functional data via EEG signals recorded across scalp electrodes. The high-dimensional data can be used to contrast neurodevelopmental trajectories between diagnostic groups, for example between typically developing (TD) children and children with autism spectrum disorder (ASD). Valid inference requires characterization of the complex EEG dependency structure as well as covariate-dependent heteroscedasticity, such as changes in variation over developmental age. In our motivating study, EEG data is collected on TD and ASD children aged two to twelve years old. The peak alpha frequency, a prominent peak in the alpha spectrum, is a biomarker linked to neurodevelopment that shifts as children age. To retain information, we model patterns of alpha spectral variation, rather than just the peak location, regionally across the scalp and chronologically across development. We propose a covariate-adjusted hybrid principal components analysis (CA-HPCA) for EEG data, which utilizes both vector and functional principal components analysis while simultaneously adjusting for covariate-dependent heteroscedasticity. CA-HPCA assumes the covariance process is weakly separable conditional on observed covariates, allowing for covariate-adjustments to be made on the marginal covariances rather than the full covariance leading to stable and computationally efficient estimation. The proposed methodology provides novel insights into neurodevelopmental differences between TD and ASD children.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.