{"title":"On dual-asymmetry linear double AR models","authors":"Song-ning Tan, Qianqian Zhu","doi":"10.4310/21-sii691","DOIUrl":null,"url":null,"abstract":"This paper introduces a dual-asymmetry linear double autoregressive (DA-LDAR) model that can allow for asymmetric effects in both the conditional location and volatility components of time series data. The strict stationarity is discussed for the new model, for which a sufficient condition is established. A self-weighted exponential quasi-maximum likelihood estimator (EQMLE) is proposed for the DA-LDAR model, and a mixed portmanteau test for goodness-of-fit is constructed based on the self-weighted EQMLE. It is noteworthy that all the asymptotic properties for estimation and testing are established without any moment condition on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Since all inference tools need to estimate the unknown density function of innovations, we employ a random-weighting bootstrap method to facilitate accurate inference and show its asymptotic validity. Simulation studies provide support for theoretical results, and an empirical application to NASDAQ Composite Index illustrates the usefulness of the new model.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/21-sii691","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a dual-asymmetry linear double autoregressive (DA-LDAR) model that can allow for asymmetric effects in both the conditional location and volatility components of time series data. The strict stationarity is discussed for the new model, for which a sufficient condition is established. A self-weighted exponential quasi-maximum likelihood estimator (EQMLE) is proposed for the DA-LDAR model, and a mixed portmanteau test for goodness-of-fit is constructed based on the self-weighted EQMLE. It is noteworthy that all the asymptotic properties for estimation and testing are established without any moment condition on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Since all inference tools need to estimate the unknown density function of innovations, we employ a random-weighting bootstrap method to facilitate accurate inference and show its asymptotic validity. Simulation studies provide support for theoretical results, and an empirical application to NASDAQ Composite Index illustrates the usefulness of the new model.
期刊介绍:
Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.