On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform

V. Kumar
{"title":"On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform","authors":"V. Kumar","doi":"10.7153/JCA-2020-17-05","DOIUrl":null,"url":null,"abstract":"Raina and Srivastava [20] introduced a generalized Lambert transform. Goyal and Laddha [8] have introduced generalizations of the Riemann zeta function and generalized Lambert transform. In the present paper, we introduce generalizations of the Hurwitz-Lerch zeta function and Lambert transform in a diverse direction. We derive generating functions involving generalized Hurwitz-Lerch zeta function. Connections between the generalized Lambert transform and generalized Hurwitz-Lerch zeta function are established. An inversion formula for the generalized Lambert transform is obtained. Some examples and special cases to illustrate our results are also mentioned.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/JCA-2020-17-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Raina and Srivastava [20] introduced a generalized Lambert transform. Goyal and Laddha [8] have introduced generalizations of the Riemann zeta function and generalized Lambert transform. In the present paper, we introduce generalizations of the Hurwitz-Lerch zeta function and Lambert transform in a diverse direction. We derive generating functions involving generalized Hurwitz-Lerch zeta function. Connections between the generalized Lambert transform and generalized Hurwitz-Lerch zeta function are established. An inversion formula for the generalized Lambert transform is obtained. Some examples and special cases to illustrate our results are also mentioned.
广义Hurwitz-Lerch zeta函数与广义Lambert变换
Raina和Srivastava[20]引入了广义朗伯变换。Goyal和Laddha[8]介绍了黎曼ζ函数和广义朗伯特变换的推广。在本文中,我们在不同的方向上介绍了Hurwitz-Lerch zeta函数和Lambert变换的推广。导出了包含广义Hurwitz-Lerch zeta函数的生成函数。建立了广义Lambert变换与广义Hurwitz-Lerch zeta函数之间的联系。得到了广义朗伯变换的反演公式。文中还列举了一些例子和特殊情况来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信