Upper bounds for a general linear functional with application to orthogonal polynomial expansions

A. Mercer, P. R. Mercer
{"title":"Upper bounds for a general linear functional with application to orthogonal polynomial expansions","authors":"A. Mercer, P. R. Mercer","doi":"10.7153/jca-2019-15-11","DOIUrl":null,"url":null,"abstract":"An upper bound on a linear functional satisfying several constraints is found, then used to provide a short and simple proof of convergence, for orthogonal polynomial expansions. Mathematics subject classification (2010): 42C10, 26D20.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/jca-2019-15-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An upper bound on a linear functional satisfying several constraints is found, then used to provide a short and simple proof of convergence, for orthogonal polynomial expansions. Mathematics subject classification (2010): 42C10, 26D20.
一般线性泛函的上界及其在正交多项式展开式上的应用
给出了满足若干约束的线性泛函的上界,并给出了正交多项式展开式收敛性的一个简短证明。数学学科分类(2010):42C10, 26D20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信