Further results about normal criteria and shared values for families of meromorphic functions

Jianm ng Qi
{"title":"Further results about normal criteria and shared values for families of meromorphic functions","authors":"Jianm ng Qi","doi":"10.7153/JCA-2019-14-06","DOIUrl":null,"url":null,"abstract":". Let k be a positive integer and let F be a family of meromorphic functions in the domain D all of whose zeros with multiplicity at least k . Let P be a polynomial and P have at least one simple zero, p = deg ( P ) (cid:2) k + 2. If, for each pair f , g ∈ F , P ( f ) G m ( f ) and P ( g ) G m ( g ) share a nonzero constant b ignoring multiplicity in D, where G ( f ) = P ( f ( k ) )+ H ( f ) is a differential polynomial of f satisfying w deg | H (cid:3) kmql + mq + 1 or w ( H ) − deg ( H ) < qk , and q > l (cid:2) k + 1 is a positive integer, then F is normal in D.","PeriodicalId":73656,"journal":{"name":"Journal of classical analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of classical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/JCA-2019-14-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Let k be a positive integer and let F be a family of meromorphic functions in the domain D all of whose zeros with multiplicity at least k . Let P be a polynomial and P have at least one simple zero, p = deg ( P ) (cid:2) k + 2. If, for each pair f , g ∈ F , P ( f ) G m ( f ) and P ( g ) G m ( g ) share a nonzero constant b ignoring multiplicity in D, where G ( f ) = P ( f ( k ) )+ H ( f ) is a differential polynomial of f satisfying w deg | H (cid:3) kmql + mq + 1 or w ( H ) − deg ( H ) < qk , and q > l (cid:2) k + 1 is a positive integer, then F is normal in D.
亚纯函数族的正规准则和共享值的进一步结果
。设k是一个正整数,设F是D域中的一组亚纯函数它们的0的多重性至少为k。设P是一个多项式,且P至少有一个简单零,P = deg (P) (cid:2) k + 2。如果每一对f, g∈f P (f) g m (f)和P (g) g m (g)共享一个非零常数b D忽视多样性,在g (f) = P (f (k)) + H f (f)是一个微分多项式满足w度| H (cid: 3) kmql + mq + 1或w (H)−度(H) < qk, q > l (cid: 2) k + 1是一个正整数,然后在D f是正常的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信