The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure

Tehnika Pub Date : 2023-01-01 DOI:10.5937/tehnika2301009m
A. Mitrašinović, Jasmina Nešković, N. Labus, M. Radosavljević
{"title":"The effect of the refractory material on the phase transformation parameteres during forming of the Al-8wt%Si-3wt%Cu structure","authors":"A. Mitrašinović, Jasmina Nešković, N. Labus, M. Radosavljević","doi":"10.5937/tehnika2301009m","DOIUrl":null,"url":null,"abstract":"Solidification of the aluminum alloys takes place in heat-resistant refractory materials made of either metal or oxides that are stable at high temperatures. The significantly different thermal conductivities between metals and heat-resistant oxides cause solidification with significantly different cooling rates. In this work, we formed a secondary Al-8wt%Si-3wt%Cu alloy in a stainless steel mould, a thin-walled stainless steel cup, and a thick-walled zirconium oxide cup. The course of the formation of the solidified structure was monitored by immersed thermocouples, which enabled the computer analysis of the cooling curves. The parameters on which the cooling rate had the most significant influence are the undercooling values of the formation of primary aluminum crystals, the time of the growth of primary aluminum crystals and the total solidification time from the formation of the first solid crystals to the formation of a fully solidified structure. The Al-8wt%Si-3wt%Cu aluminum alloy formed in metal mould has a smaller grain size and consequently higher tensile strength, lower macro-porosity and less rough surface than the alloy formed in refractory oxide coatings. The examined heat-resistant refractory material influenced the formation of three basic micro-constituents in the Al-8wt%Si-3wt%Cu alloy in different time intervals, which led to the formation of a different microstructure, where the decision on the choice of material for the heat-resistant refractory material depends on the profitability of the entire process, the required quality of the external surfaces and required minimum strength of the final product.","PeriodicalId":22484,"journal":{"name":"Tehnika","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/tehnika2301009m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solidification of the aluminum alloys takes place in heat-resistant refractory materials made of either metal or oxides that are stable at high temperatures. The significantly different thermal conductivities between metals and heat-resistant oxides cause solidification with significantly different cooling rates. In this work, we formed a secondary Al-8wt%Si-3wt%Cu alloy in a stainless steel mould, a thin-walled stainless steel cup, and a thick-walled zirconium oxide cup. The course of the formation of the solidified structure was monitored by immersed thermocouples, which enabled the computer analysis of the cooling curves. The parameters on which the cooling rate had the most significant influence are the undercooling values of the formation of primary aluminum crystals, the time of the growth of primary aluminum crystals and the total solidification time from the formation of the first solid crystals to the formation of a fully solidified structure. The Al-8wt%Si-3wt%Cu aluminum alloy formed in metal mould has a smaller grain size and consequently higher tensile strength, lower macro-porosity and less rough surface than the alloy formed in refractory oxide coatings. The examined heat-resistant refractory material influenced the formation of three basic micro-constituents in the Al-8wt%Si-3wt%Cu alloy in different time intervals, which led to the formation of a different microstructure, where the decision on the choice of material for the heat-resistant refractory material depends on the profitability of the entire process, the required quality of the external surfaces and required minimum strength of the final product.
研究了耐火材料对Al-8wt%Si-3wt%Cu组织形成过程中相变参数的影响
铝合金的凝固发生在高温下稳定的金属或氧化物制成的耐热耐火材料中。金属和耐热氧化物之间的热导率显著不同,导致凝固的冷却速率显著不同。在这项工作中,我们在不锈钢模具中形成了Al-8wt%Si-3wt%Cu合金,薄壁不锈钢杯和厚壁氧化锆杯。采用浸没式热电偶对凝固组织的形成过程进行了监测,从而实现了冷却曲线的计算机分析。冷却速率对初生铝晶体形成的过冷值、初生铝晶体的生长时间和初生铝晶体形成到完全凝固组织的总凝固时间影响最大。在金属模具中形成的Al-8wt%Si-3wt%Cu铝合金比在耐火氧化物涂层中形成的合金具有更小的晶粒尺寸,从而具有更高的抗拉强度,更低的宏观孔隙率和更少的粗糙表面。所研究的耐热耐火材料在不同的时间间隔内影响Al-8wt%Si-3wt%Cu合金中三种基本微观成分的形成,从而导致不同微观结构的形成,其中耐热耐火材料材料的选择取决于整个过程的盈利能力,所需的外表面质量和最终产品所需的最低强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
26
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信