Analysis of stagnation point flow over a stretching/shrinking surface

IF 0.7 Q3 MATHEMATICS, APPLIED
M'bagne F. 'bengue, J. Paullet
{"title":"Analysis of stagnation point flow over a stretching/shrinking surface","authors":"M'bagne F. 'bengue, J. Paullet","doi":"10.7153/dea-2021-13-23","DOIUrl":null,"url":null,"abstract":". In this article we analyze the boundary value problem governing stagnation-point fl ow of a fl uid with a power law outer fl ow over a surface moving with a speed proportional to the outer fl ow. The fl ow is characterized by two physical parameters; ε , which measures the stretching ( ε > 0) or shrinking ( ε < 0) of the sheet relative to the outer fl ow, and n > 0, the power law exponent. In the case of aiding fl ow ( ε > 0), where the (stretching) surface and the outer fl ow move in the same direction, we prove existence of a solution for all values of n . For opposing fl ow ( ε < 0), where the (shrinking) surface and the outer fl ow move in opposite directions, the situation is much more complicated. For − 1 < ε < 0 and all n we prove a solution exists. However, for ε (cid:2) − 1, we prove there exists a value, ε crit ( n ) (cid:2) − 1, such that no solutions exist for ε (cid:2) ε crit . For n = 1 / 7 and n = 1 / 3 we prove that ε crit = − 1. For other values of n , we derive bounds which illustrate the complicated nature of the existence/nonexistence boundary for opposing ( ε < 0) fl ows.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2021-13-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. In this article we analyze the boundary value problem governing stagnation-point fl ow of a fl uid with a power law outer fl ow over a surface moving with a speed proportional to the outer fl ow. The fl ow is characterized by two physical parameters; ε , which measures the stretching ( ε > 0) or shrinking ( ε < 0) of the sheet relative to the outer fl ow, and n > 0, the power law exponent. In the case of aiding fl ow ( ε > 0), where the (stretching) surface and the outer fl ow move in the same direction, we prove existence of a solution for all values of n . For opposing fl ow ( ε < 0), where the (shrinking) surface and the outer fl ow move in opposite directions, the situation is much more complicated. For − 1 < ε < 0 and all n we prove a solution exists. However, for ε (cid:2) − 1, we prove there exists a value, ε crit ( n ) (cid:2) − 1, such that no solutions exist for ε (cid:2) ε crit . For n = 1 / 7 and n = 1 / 3 we prove that ε crit = − 1. For other values of n , we derive bounds which illustrate the complicated nature of the existence/nonexistence boundary for opposing ( ε < 0) fl ows.
拉伸/收缩表面上的滞止点流动分析
。本文分析了幂律外流流过与外流速度成正比的表面时的滞止点流动的边值问题。流动由两个物理参数表征;ε表示薄片相对于外部流动的拉伸(ε >)或收缩(ε < 0), n >表示幂律指数。对于辅助流(ε > 0),当(拉伸)表面与外流沿同一方向运动时,我们证明了所有n值的解的存在性。对于ε < 0的反向流动,即(收缩)表面与外流方向相反,情况就复杂得多。对于−1 < ε < 0和所有n,证明了一个解的存在。然而,对于ε (cid:2)−1,我们证明了ε (cid:2)−1存在一个值ε crit (n) (cid:2)−1,使得ε (cid:2) ε crit不存在解。对于n = 1 / 7和n = 1 / 3,证明了ε临界值= - 1。对于n的其他值,我们推导了边界,说明了相反(ε < 0)流的存在/不存在边界的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信