Existence of solutions for a coupled system of Caputo type fractional-order differential inclusions with non-separated boundary conditions on multivalued maps

IF 0.7 Q3 MATHEMATICS, APPLIED
B. Krushna, K. R. Prasad, P. Veeraiah
{"title":"Existence of solutions for a coupled system of Caputo type fractional-order differential inclusions with non-separated boundary conditions on multivalued maps","authors":"B. Krushna, K. R. Prasad, P. Veeraiah","doi":"10.7153/DEA-2021-13-10","DOIUrl":null,"url":null,"abstract":"Sufficient conditions for the existence of solutions to a coupled system of fractionalorder differential inclusions associated with fractional non-separated boundary conditions for multivalued maps are established, by employing the nonlinear alternative of Leray–Schauder type. We emphasize that the methods of fixed point theory used in our analysis are standard, although their application to a system of fractional-order differential inclusions is new. Mathematics subject classification (2010): 34A08, 34A60, 34B15.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Sufficient conditions for the existence of solutions to a coupled system of fractionalorder differential inclusions associated with fractional non-separated boundary conditions for multivalued maps are established, by employing the nonlinear alternative of Leray–Schauder type. We emphasize that the methods of fixed point theory used in our analysis are standard, although their application to a system of fractional-order differential inclusions is new. Mathematics subject classification (2010): 34A08, 34A60, 34B15.
多值映射上具有非分离边界条件的Caputo型分数阶微分包含耦合系统解的存在性
利用Leray-Schauder型的非线性替代,建立了多值映射分数阶非分离边界条件下分数阶微分包含耦合系统解存在的充分条件。我们强调,在我们的分析中使用的不动点理论方法是标准的,尽管它们应用于分数阶微分包含系统是新的。数学学科分类(2010):34A08, 34A60, 34B15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信