A remark on the local well-posedness for a coupled system of mKdV type equations in H^s × H^k

IF 0.7 Q3 MATHEMATICS, APPLIED
X. Carvajal
{"title":"A remark on the local well-posedness for a coupled system of mKdV type equations in H^s × H^k","authors":"X. Carvajal","doi":"10.7153/dea-2020-12-27","DOIUrl":null,"url":null,"abstract":". We consider the initial value problem associated to a system consisting modi fi ed Korteweg-de Vries type equations and using only bilinear estimates of the type (cid:2) J γ F 1 b 1 J F 2 b 2 (cid:2) L 2 x L 2 t , where J is the Bessel potential and F jb j , j = 1 , 2 are multiplication operators, we prove the local well-posedness results for given data in low regularity Sobolev spaces H s ( R ) × H k ( R ) for α (cid:3) = 0 , 1. In this work we improve the previous result in [6], extending the LWP region from | s − k | < 1 / 2 to | s − k | < 1. This result is sharp in the region of the LWP with s (cid:2) 0 and k (cid:2) 0, in the sense of the trilinear estimates fails to hold.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2020-12-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. We consider the initial value problem associated to a system consisting modi fi ed Korteweg-de Vries type equations and using only bilinear estimates of the type (cid:2) J γ F 1 b 1 J F 2 b 2 (cid:2) L 2 x L 2 t , where J is the Bessel potential and F jb j , j = 1 , 2 are multiplication operators, we prove the local well-posedness results for given data in low regularity Sobolev spaces H s ( R ) × H k ( R ) for α (cid:3) = 0 , 1. In this work we improve the previous result in [6], extending the LWP region from | s − k | < 1 / 2 to | s − k | < 1. This result is sharp in the region of the LWP with s (cid:2) 0 and k (cid:2) 0, in the sense of the trilinear estimates fails to hold.
H^s × H^k中mKdV型方程耦合系统的局部适定性
. 我们认为相关的初值问题系统组成莫迪fi ed Korteweg-de弗里斯类型方程和只使用双线性估计的类型(cid: 2) Jγ1 b J F 2 b 2 (cid: 2) L 2 x L 2 t,其中J是贝塞尔潜力和F jb J, J = 1, 2是乘法运算符,我们证明了本地结果适定性问题给定数据在低规律性索伯列夫空间H s (R)×H k (R)α(cid: 3) = 0, 1。在这项工作中,我们改进了先前在[6]中的结果,将LWP区域从| s−k | < 1 / 2扩展到| s−k | < 1。这个结果在s (cid:2) 0和k (cid:2) 0的LWP区域是明显的,在三线性估计不成立的意义上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信