Multiplicity results for critical fractional equations with sign-changing weight functions

IF 0.7 Q3 MATHEMATICS, APPLIED
Yang Pu, Jia‐Feng Liao
{"title":"Multiplicity results for critical fractional equations with sign-changing weight functions","authors":"Yang Pu, Jia‐Feng Liao","doi":"10.7153/DEA-2021-13-09","DOIUrl":null,"url":null,"abstract":". In this paper, we consider a time-independent fractional equation: where Ω is a smooth bounded domain, s ∈ ( 0 , 1 ) , N > 2 s 0 < q < 1, the coef fi cient functions f and g may change sign. We fi rst obtain the existence of ground state solution by the Nehari method under the combined effect of coef fi cient functions. Then we fi nd the multiplicity of positive solutions by Mountain pass theorem under some stronger conditions, and one of them is a ground state solution.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"129 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2021-13-09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. In this paper, we consider a time-independent fractional equation: where Ω is a smooth bounded domain, s ∈ ( 0 , 1 ) , N > 2 s 0 < q < 1, the coef fi cient functions f and g may change sign. We fi rst obtain the existence of ground state solution by the Nehari method under the combined effect of coef fi cient functions. Then we fi nd the multiplicity of positive solutions by Mountain pass theorem under some stronger conditions, and one of them is a ground state solution.
具有变符号权函数的临界分数阶方程的多重性结果
. 本文考虑一个与时间无关的分数阶方程,其中Ω是光滑有界域,s∈(0,1),N bbb20 s 0 < q < 1,系数函数f和g可以改变符号。首先用Nehari方法得到了在系数函数联合作用下基态解的存在性。然后利用山口定理,在一些较强的条件下求出正解的多重性,其中一个正解是基态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信