Positive solutions for a fourth order differential inclusion based on the Euler-Bernoulli equation for a Cantilever beam

IF 0.7 Q3 MATHEMATICS, APPLIED
John S. Spraker
{"title":"Positive solutions for a fourth order differential inclusion based on the Euler-Bernoulli equation for a Cantilever beam","authors":"John S. Spraker","doi":"10.7153/dea-2019-11-26","DOIUrl":null,"url":null,"abstract":". An existence result for positive solutions to a fourth order differential inclusion with boundary values is given. This is accomplished by using a fi xed point theorem on cones for multivalued maps, L 1 selections and a generalization of the Ascoli theorem. The inclusion allows the function and its fi rst three derivatives to be on the right-hand side. The proof involves a Green’s function and a positive eigenvalue of a particular operator. An example is provided.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

. An existence result for positive solutions to a fourth order differential inclusion with boundary values is given. This is accomplished by using a fi xed point theorem on cones for multivalued maps, L 1 selections and a generalization of the Ascoli theorem. The inclusion allows the function and its fi rst three derivatives to be on the right-hand side. The proof involves a Green’s function and a positive eigenvalue of a particular operator. An example is provided.
基于Euler-Bernoulli方程的悬臂梁四阶微分包含的正解
. 给出了一类带边值的四阶微分包含正解的存在性结果。这是通过使用多值映射的锥上的不动点定理、L 1选择和Ascoli定理的推广来实现的。包含允许函数和它的前三个导数在右边。证明涉及一个格林函数和一个特定算子的正特征值。提供了一个示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信