{"title":"The Nehari Manifold for a p-Laplacian equation with concave-convex nonlinearities and sign-changing potential","authors":"Hong-Ying Li","doi":"10.7153/DEA-2019-11-16","DOIUrl":null,"url":null,"abstract":". In this paper, we study the multiplicity of solutions for a class of concave-convex p - Laplacian equations with the combined effect of coef fi cient functions of concave-convex terms. By the Nehari method and some analysis techniques, we obtain an exact constant for the effect of coef fi cient functions of concave-convex terms to ensure this problem has two nonzero and nonnegative solutions and give the relation of size of the two solutions. Moreover, under some stronger conditions, we prove that the two solutions are positive. Our results generalize and improve some known results in the literature.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2019-11-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
. In this paper, we study the multiplicity of solutions for a class of concave-convex p - Laplacian equations with the combined effect of coef fi cient functions of concave-convex terms. By the Nehari method and some analysis techniques, we obtain an exact constant for the effect of coef fi cient functions of concave-convex terms to ensure this problem has two nonzero and nonnegative solutions and give the relation of size of the two solutions. Moreover, under some stronger conditions, we prove that the two solutions are positive. Our results generalize and improve some known results in the literature.