Multiple solutions of systems involving fractional Kirchhoff-type equations with critical growth

IF 0.7 Q3 MATHEMATICS, APPLIED
A. Costa, B. Maia
{"title":"Multiple solutions of systems involving fractional Kirchhoff-type equations with critical growth","authors":"A. Costa, B. Maia","doi":"10.7153/dea-2020-12-11","DOIUrl":null,"url":null,"abstract":". In this paper we are going to study existence and multiplicity of solutions of a system involving fractional Kirchhoff-type and critical growth of form where s ∈ ( 0 , 1 ) , n > 2 s , Ω ⊂ R n is a bounded and open set, 2 ∗ s = 2 n / ( n − 2 s ) denotes the fractional critical Sobolev exponent, the functions M 1 , M 2 , f and g are continuous functions, ( − Δ ) s is the fractional laplacian operator, || . || X is a norm in the fractional Hilbert Sobolev space X ( Ω ) , F ( x , v ( x )) = v x , G x , ( x )) g ( τ ) d τ , r 1 and r 2 are positive constants, λ and γ are real parameters. For this problem we prove the existence of in fi nitely many solutions, via a suitable truncation argument and exploring the genus theory introduced by Krasnoselskii. Also we show that these solutions are suf fi ciently regular and solve the problem pointwise.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2020-12-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

. In this paper we are going to study existence and multiplicity of solutions of a system involving fractional Kirchhoff-type and critical growth of form where s ∈ ( 0 , 1 ) , n > 2 s , Ω ⊂ R n is a bounded and open set, 2 ∗ s = 2 n / ( n − 2 s ) denotes the fractional critical Sobolev exponent, the functions M 1 , M 2 , f and g are continuous functions, ( − Δ ) s is the fractional laplacian operator, || . || X is a norm in the fractional Hilbert Sobolev space X ( Ω ) , F ( x , v ( x )) = v x , G x , ( x )) g ( τ ) d τ , r 1 and r 2 are positive constants, λ and γ are real parameters. For this problem we prove the existence of in fi nitely many solutions, via a suitable truncation argument and exploring the genus theory introduced by Krasnoselskii. Also we show that these solutions are suf fi ciently regular and solve the problem pointwise.
具有临界增长的分数阶kirchhoff型方程系统的多重解
. 在本文中,我们要学习系统的存在性和多重性的解决方案涉及部分Kirchhoff-type和形式的关键增长年代∈(0,1),n > 2 s,Ω⊂R n是一个有界和开集,2∗s = 2 n / (n−2 s)表示部分关键水列夫指数函数米1米2,f和g是连续函数,(−Δ)年代分数拉普拉斯算符,| |。|| X是分数阶Hilbert Sobolev空间X (Ω)中的范数,F (X, v (X)) = vx, gx, (X)) G (τ) d τ, r1和r2是正常数,λ和γ是实参数。对于这个问题,我们通过适当的截断论证和Krasnoselskii引入的属理论,证明了有限多个解的存在性。我们还证明了这些解是充分正则的,并能逐点求解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信