Multiple solutions for a fourth order equation with nonlinear boundary conditions: theoretical and numerical aspects

IF 0.7 Q3 MATHEMATICS, APPLIED
C. Martinez, A. Martinez, G. Bressan, E. V. Castelani, Roberto Molina de Souza
{"title":"Multiple solutions for a fourth order equation with nonlinear boundary conditions: theoretical and numerical aspects","authors":"C. Martinez, A. Martinez, G. Bressan, E. V. Castelani, Roberto Molina de Souza","doi":"10.7153/DEA-2019-11-15","DOIUrl":null,"url":null,"abstract":". We consider in this work the fourth order equation with nonlinear boundary condi- tions. We present the result for the existence of multiple solutions based on the Avery-Peterson fi xed-point theorem. This work is also a study for numerical solutions based on the Levenberg- Maquardt method with a heuristic strategy for initial points that proposes to numerically deter-mine multiple solutions to the problem addressed.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2019-11-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

. We consider in this work the fourth order equation with nonlinear boundary condi- tions. We present the result for the existence of multiple solutions based on the Avery-Peterson fi xed-point theorem. This work is also a study for numerical solutions based on the Levenberg- Maquardt method with a heuristic strategy for initial points that proposes to numerically deter-mine multiple solutions to the problem addressed.
具有非线性边界条件的四阶方程的多重解:理论和数值方面
。本文研究具有非线性边界条件的四阶方程。基于Avery-Peterson不动点定理,给出了问题多重解的存在性。这项工作也是一项基于Levenberg- Maquardt方法的数值解决方案的研究,该方法对初始点采用启发式策略,提出了数值确定所处理问题的多个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信