{"title":"Response of Imidazolinone-Resistant Sunflower to Various Drift Rates of Glyphosate, Glufosinate and Indaziflam","authors":"A. T. Serim","doi":"10.59665/rar3939","DOIUrl":null,"url":null,"abstract":"Imidazolinone (IMI) herbicides are used in sunflower due to the need for sunflower broomrape control, and IMI - resistant sunflower has become common in Turkey. Cereal fields and orchards are often in close vicinity to sunflower fields, and herbicide drift from these areas can adversely affect sunflower. Fields experiments were conducted at Edirne and Ankara, Turkey, in 2018 and 2019 to quantify the sunflower (IMI - resistant) response to various simulated drift rates of glyphosate, glufosinate, and indaziflam. Herbicides were applied to sunflower at 12.5, 6.25, 3.125, and 1% of recommended rates. Crop injury was visually evaluated at 7, 14, and 28 d after treatment (DAT), and plant responses to herbicides were assessed at harvest. Sunflower was injured by all rates of glyphosate applied, with 15 to 100% (in Edirne) and 9 to 84% (Ankara) injury at 28 DAT. Glufosinate - related injury was 5 to 58% in Edirne and 7 to 43% in Ankara at 7 DAT, and decreased with time. In contrast, indaziflam caused no significant crop injury or yield losses. The recommended rates of 6.25% and 12.5 of glyphosate killed all sunflower plants in 2019, while in 2018 the yield loss was 100% only at recommended rate of 12.5% glyphosate. Lower rates of glyphosate reduced yield by 2 to 87% in 2018 and 18 to 62% in 2019. On the other hand, the two highest rates of glufosinate resulted in a yield reduction of 9 and 6% in 2018, respectively, but not in 2019. Injury at early stages after exposure is a good indicator of the impact of glyphosate drift on sunflower yield.","PeriodicalId":49589,"journal":{"name":"Romanian Agricultural Research","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Agricultural Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.59665/rar3939","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Imidazolinone (IMI) herbicides are used in sunflower due to the need for sunflower broomrape control, and IMI - resistant sunflower has become common in Turkey. Cereal fields and orchards are often in close vicinity to sunflower fields, and herbicide drift from these areas can adversely affect sunflower. Fields experiments were conducted at Edirne and Ankara, Turkey, in 2018 and 2019 to quantify the sunflower (IMI - resistant) response to various simulated drift rates of glyphosate, glufosinate, and indaziflam. Herbicides were applied to sunflower at 12.5, 6.25, 3.125, and 1% of recommended rates. Crop injury was visually evaluated at 7, 14, and 28 d after treatment (DAT), and plant responses to herbicides were assessed at harvest. Sunflower was injured by all rates of glyphosate applied, with 15 to 100% (in Edirne) and 9 to 84% (Ankara) injury at 28 DAT. Glufosinate - related injury was 5 to 58% in Edirne and 7 to 43% in Ankara at 7 DAT, and decreased with time. In contrast, indaziflam caused no significant crop injury or yield losses. The recommended rates of 6.25% and 12.5 of glyphosate killed all sunflower plants in 2019, while in 2018 the yield loss was 100% only at recommended rate of 12.5% glyphosate. Lower rates of glyphosate reduced yield by 2 to 87% in 2018 and 18 to 62% in 2019. On the other hand, the two highest rates of glufosinate resulted in a yield reduction of 9 and 6% in 2018, respectively, but not in 2019. Injury at early stages after exposure is a good indicator of the impact of glyphosate drift on sunflower yield.
期刊介绍:
The Journal ROMANIAN AGRICULTURAL RESEARCH is an “open access” one, which publishes original articles, short communications, presenting new scientific results – theoretical, experimental and technical – on plant breeding and genetics, physiology, biotechnology, mineral nutrition and plant protection, in field crops. Reviews on up-to date subjects and recent research, preferably from Eastern Europe, may also be published.