How to Translate Dialects: A Segmentation-Centric Pivot Translation Approach

Q4 Computer Science
Michael Paul, A. Finch, E. Sumita
{"title":"How to Translate Dialects: A Segmentation-Centric Pivot Translation Approach","authors":"Michael Paul, A. Finch, E. Sumita","doi":"10.5715/JNLP.20.563","DOIUrl":null,"url":null,"abstract":"Recent research on multilingual statistical machine translation (SMT) focuses on the usage of pivot languages in order to overcome resource limitations for certain language pairs. This paper proposes a new method to translate a dialect language into a foreign language by integrating transliteration approaches based on Bayesian alignment (BA) models with pivot-based SMT approaches. The advantages of the proposed method with respect to standard SMT approaches are threefold: (1) it uses a standard language as the pivot language and acquires knowledge about the relation between dialects and a standard language automatically, (2) it avoids segmentation mismatches between the input and the translation model by mapping the character sequences of the dialect language to the word segmentation of the standard language, and (3) it reduces the translation task complexity by using monotone decoding techniques. Experiment results translating five Japanese dialects (Kumamoto, Kyoto, Nagoya, Okinawa, Osaka) into four Indo-European languages (English, German, Russian, Hindi) and two Asian languages (Chinese, Korean) revealed that the proposed method improves the translation quality of dialect translation tasks and outperforms standard pivot translation approaches concatenating SMT engines for the majority of the investigated language pairs.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"20 1","pages":"563-583"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5715/JNLP.20.563","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.20.563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Recent research on multilingual statistical machine translation (SMT) focuses on the usage of pivot languages in order to overcome resource limitations for certain language pairs. This paper proposes a new method to translate a dialect language into a foreign language by integrating transliteration approaches based on Bayesian alignment (BA) models with pivot-based SMT approaches. The advantages of the proposed method with respect to standard SMT approaches are threefold: (1) it uses a standard language as the pivot language and acquires knowledge about the relation between dialects and a standard language automatically, (2) it avoids segmentation mismatches between the input and the translation model by mapping the character sequences of the dialect language to the word segmentation of the standard language, and (3) it reduces the translation task complexity by using monotone decoding techniques. Experiment results translating five Japanese dialects (Kumamoto, Kyoto, Nagoya, Okinawa, Osaka) into four Indo-European languages (English, German, Russian, Hindi) and two Asian languages (Chinese, Korean) revealed that the proposed method improves the translation quality of dialect translation tasks and outperforms standard pivot translation approaches concatenating SMT engines for the majority of the investigated language pairs.
如何翻译方言:以切分为中心的支点翻译方法
近年来,多语言统计机器翻译的研究主要集中在使用中心语言,以克服某些语言对的资源限制。本文提出了一种将基于贝叶斯对齐(BA)模型的音译方法与基于支点的SMT方法相结合的方言语言翻译新方法。与标准SMT方法相比,所提出的方法的优点有三点:(1)以标准语言为中心语言,自动获取方言与标准语言之间的关系知识;(2)通过将方言语言的字符序列映射到标准语言的分词,避免了输入与翻译模型之间的分词不匹配;(3)利用单调解码技术降低了翻译任务的复杂度。将5种日本方言(熊本、京都、名古屋、冲绳、大阪)翻译成4种印欧语言(英语、德语、俄语、印地语)和2种亚洲语言(汉语、韩语)的实验结果表明,该方法提高了方言翻译任务的翻译质量,并且在大多数所研究的语言对中都优于连接SMT引擎的标准支点翻译方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信