Daniel Flannery, Yusuke Miyao, Graham Neubig, Shinsuke Mori
{"title":"A Pointwise Approach to Training Dependency Parsers from Partially Annotated Corpora","authors":"Daniel Flannery, Yusuke Miyao, Graham Neubig, Shinsuke Mori","doi":"10.5715/JNLP.19.167","DOIUrl":null,"url":null,"abstract":"We introduce a word-based dependency parser for Japanese that can be trained from partially annotated corpora, allowing for effective use of available linguistic resources and reduction of the costs of preparing new training data. This is especially important for domain adaptation in a real-world situation. We use a pointwise approach where each edge in the dependency tree for a sentence is estimated independently. Experiments on Japanese dependency parsing show that this approach allows for rapid training and achieves accuracy comparable to state-of-the-art dependency parsers trained on fully annotated data.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"68 1","pages":"167-191"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.19.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9
Abstract
We introduce a word-based dependency parser for Japanese that can be trained from partially annotated corpora, allowing for effective use of available linguistic resources and reduction of the costs of preparing new training data. This is especially important for domain adaptation in a real-world situation. We use a pointwise approach where each edge in the dependency tree for a sentence is estimated independently. Experiments on Japanese dependency parsing show that this approach allows for rapid training and achieves accuracy comparable to state-of-the-art dependency parsers trained on fully annotated data.