A Pointwise Approach to Training Dependency Parsers from Partially Annotated Corpora

Q4 Computer Science
Daniel Flannery, Yusuke Miyao, Graham Neubig, Shinsuke Mori
{"title":"A Pointwise Approach to Training Dependency Parsers from Partially Annotated Corpora","authors":"Daniel Flannery, Yusuke Miyao, Graham Neubig, Shinsuke Mori","doi":"10.5715/JNLP.19.167","DOIUrl":null,"url":null,"abstract":"We introduce a word-based dependency parser for Japanese that can be trained from partially annotated corpora, allowing for effective use of available linguistic resources and reduction of the costs of preparing new training data. This is especially important for domain adaptation in a real-world situation. We use a pointwise approach where each edge in the dependency tree for a sentence is estimated independently. Experiments on Japanese dependency parsing show that this approach allows for rapid training and achieves accuracy comparable to state-of-the-art dependency parsers trained on fully annotated data.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"68 1","pages":"167-191"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5715/JNLP.19.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

Abstract

We introduce a word-based dependency parser for Japanese that can be trained from partially annotated corpora, allowing for effective use of available linguistic resources and reduction of the costs of preparing new training data. This is especially important for domain adaptation in a real-world situation. We use a pointwise approach where each edge in the dependency tree for a sentence is estimated independently. Experiments on Japanese dependency parsing show that this approach allows for rapid training and achieves accuracy comparable to state-of-the-art dependency parsers trained on fully annotated data.
从部分标注语料库中训练依赖解析器的点向方法
我们为日语引入了一个基于单词的依赖解析器,它可以从部分注释的语料库中进行训练,从而有效地利用可用的语言资源并减少准备新训练数据的成本。这对于现实世界中的领域适应尤其重要。我们使用逐点方法,其中句子依赖树中的每个边都是独立估计的。在日语依赖项解析上的实验表明,这种方法允许快速训练,并且达到与在完全注释数据上训练的最先进的依赖项解析器相当的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信