{"title":"Embodied carbon savings of co-living and implications for metrics","authors":"T. Malmqvist, Johanna Brismark","doi":"10.5334/bc.347","DOIUrl":null,"url":null,"abstract":"In light of the climate crisis and conflicting political ambitions in many countries to rapidly increase the number of dwellings, what housing strategies could reduce emissions? Co-living is one strategy sometimes highlighted but rarely implemented in mainstream construction practices. Using two Swedish case studies, the potential embodied carbon savings are explored for co-living designs. When comparing building designs, normalisation of impacts or energy use per floor area is unequivocally the norm. The present comparison between co-living and traditional apartment design indicates an embodied carbon savings at the building level of 10–20% depending on whether embodied carbon is normalised per gross or residential floor area. However, normalisation per capita (inhabitant) shows substantially higher savings of 21–36% depending on the case studied. The effect of different metrics is illustrated to quantify potential embodied carbon savings of non-mainstream building design solutions such as co-living. Even more substantial embodied carbon savings can be achieved by avoiding new construction through the ability of enabling a more efficient use of indoor space. The need for rethinking carbon and space metrics will help the building sector meet emission targets.","PeriodicalId":93168,"journal":{"name":"Buildings & cities","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings & cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/bc.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In light of the climate crisis and conflicting political ambitions in many countries to rapidly increase the number of dwellings, what housing strategies could reduce emissions? Co-living is one strategy sometimes highlighted but rarely implemented in mainstream construction practices. Using two Swedish case studies, the potential embodied carbon savings are explored for co-living designs. When comparing building designs, normalisation of impacts or energy use per floor area is unequivocally the norm. The present comparison between co-living and traditional apartment design indicates an embodied carbon savings at the building level of 10–20% depending on whether embodied carbon is normalised per gross or residential floor area. However, normalisation per capita (inhabitant) shows substantially higher savings of 21–36% depending on the case studied. The effect of different metrics is illustrated to quantify potential embodied carbon savings of non-mainstream building design solutions such as co-living. Even more substantial embodied carbon savings can be achieved by avoiding new construction through the ability of enabling a more efficient use of indoor space. The need for rethinking carbon and space metrics will help the building sector meet emission targets.