Deep Learning Based Models for Offline Gurmukhi Handwritten Character and Numeral Recognition

Q4 Computer Science
M. K. Mahto, K. Bhatia, R. Sharma
{"title":"Deep Learning Based Models for Offline Gurmukhi Handwritten Character and Numeral Recognition","authors":"M. K. Mahto, K. Bhatia, R. Sharma","doi":"10.5565/rev/elcvia.1282","DOIUrl":null,"url":null,"abstract":"Over the last few years, several researchers have worked on handwritten character recognition and have proposed various techniques to improve the performance of Indic and non-Indic scripts recognition. Here, a Deep Convolutional Neural Network has been proposed that learns deep features for offline Gurmukhi handwritten character and numeral recognition (HCNR). The proposed network works efficiently for training as well as testing and exhibits a good recognition performance. Two primary datasets comprising of offline handwritten Gurmukhi characters and Gurmukhi numerals have been employed in the present work. The testing accuracies achieved using the proposed network is 98.5% for characters and 98.6% for numerals.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

Abstract

Over the last few years, several researchers have worked on handwritten character recognition and have proposed various techniques to improve the performance of Indic and non-Indic scripts recognition. Here, a Deep Convolutional Neural Network has been proposed that learns deep features for offline Gurmukhi handwritten character and numeral recognition (HCNR). The proposed network works efficiently for training as well as testing and exhibits a good recognition performance. Two primary datasets comprising of offline handwritten Gurmukhi characters and Gurmukhi numerals have been employed in the present work. The testing accuracies achieved using the proposed network is 98.5% for characters and 98.6% for numerals.
基于深度学习的离线Gurmukhi手写字符和数字识别模型
在过去的几年里,一些研究人员一直致力于手写字符识别,并提出了各种技术来提高印度和非印度文字识别的性能。本文提出了一种深度卷积神经网络,用于学习离线Gurmukhi手写字符和数字识别(HCNR)的深度特征。该网络能够有效地进行训练和测试,并表现出良好的识别性能。本文采用了两个主要的数据集,包括离线手写的廓尔穆克文字和廓尔穆克数字。使用该网络实现的字符测试准确率为98.5%,数字测试准确率为98.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信