{"title":"Invited review: Effect of temperature on a granular pile","authors":"T. Divoux","doi":"10.4279/pip.020006","DOIUrl":null,"url":null,"abstract":"As a fragile construction, a granular pile is very sensitive to minute external perturbations. In particular, it is now well established that a granular assembly is sensitive to variations of temperature. Such variations can produce localized rearrangements as well as global static avalanches inside a pile. In this review, we sum up the various observations that have been made concerning the effect of temperature on a granular assembly. In particular, we dwell on the way controlled variations of temperature have been employed to generate the compaction of a granular pile. After laying emphasis on the key features of this compaction process, we compare it to the classic vibration-induced compaction. Finally, we also review other \\textit{granular systems} in a large sense, from microscopic (jammed multilamellar vesicles) to macroscopic scales (stone heave phenomenon linked to freezing and thawing of soils) for which periodic variations of temperature could play a key role in the dynamics at stake. Received: 10 August 2010; Accepted: 28 October 2010; Edited by: I. Ippolito; Reviewed by: A. Coniglio, Universita di Napoli “Federico II”, Napoli, Italy ; DOI: 10.4279/PIP.020006 Editor's Note: Some figures in this paper are reprinted with permission from Wiley-VCH Verlag, the American Physcal Society, Elsevier and the Nature Publishing Group. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the abovementioned editorial organizations.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2010-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
As a fragile construction, a granular pile is very sensitive to minute external perturbations. In particular, it is now well established that a granular assembly is sensitive to variations of temperature. Such variations can produce localized rearrangements as well as global static avalanches inside a pile. In this review, we sum up the various observations that have been made concerning the effect of temperature on a granular assembly. In particular, we dwell on the way controlled variations of temperature have been employed to generate the compaction of a granular pile. After laying emphasis on the key features of this compaction process, we compare it to the classic vibration-induced compaction. Finally, we also review other \textit{granular systems} in a large sense, from microscopic (jammed multilamellar vesicles) to macroscopic scales (stone heave phenomenon linked to freezing and thawing of soils) for which periodic variations of temperature could play a key role in the dynamics at stake. Received: 10 August 2010; Accepted: 28 October 2010; Edited by: I. Ippolito; Reviewed by: A. Coniglio, Universita di Napoli “Federico II”, Napoli, Italy ; DOI: 10.4279/PIP.020006 Editor's Note: Some figures in this paper are reprinted with permission from Wiley-VCH Verlag, the American Physcal Society, Elsevier and the Nature Publishing Group. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the abovementioned editorial organizations.
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.