A Machine Learning Approach: Enhancing the Predictive Performance of Pharmaceutical Stock Price Movement during COVID

Beilei He, Weiyi Han, Suet Ying Isabelle Hon
{"title":"A Machine Learning Approach: Enhancing the Predictive Performance of Pharmaceutical Stock Price Movement during COVID","authors":"Beilei He, Weiyi Han, Suet Ying Isabelle Hon","doi":"10.4236/jdaip.2022.101001","DOIUrl":null,"url":null,"abstract":"Predicting stock price movement direction is a challenging problem influenced by different factors and capricious events. The conventional stock price prediction machine learning models heavily rely on the internal financial features, especially the stock price history. However, there are many outside-of-com-pany features that deeply interact with the companies’ stock price performance, especially during the COVID period. In this study, we selected 9 COVID vaccine companies and collected their relevant features over the past 20 months. We add-ed handcrafted external information, including COVID-related statistics and company-specific vaccine progress information. We implemented, evaluated, and compared several machine learning models, including Multilayer Perceptron Neural Networks with logistic regression and decision trees with boosting and bagging algorithms. The results suggest that the application of feature engineering and data mining techniques can effectively enhance the performance of models predicting stock price movement during the COVID period. The results show that COVID-related handcrafted features help to increase the model prediction accuracy by 7.3% and AUROC by 6.5% on average. Further exploration showed that with data selection the decision tree model with gradient, boosting algorithm achieved 70% in AUROC and 66% in the accuracy.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2022.101001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Predicting stock price movement direction is a challenging problem influenced by different factors and capricious events. The conventional stock price prediction machine learning models heavily rely on the internal financial features, especially the stock price history. However, there are many outside-of-com-pany features that deeply interact with the companies’ stock price performance, especially during the COVID period. In this study, we selected 9 COVID vaccine companies and collected their relevant features over the past 20 months. We add-ed handcrafted external information, including COVID-related statistics and company-specific vaccine progress information. We implemented, evaluated, and compared several machine learning models, including Multilayer Perceptron Neural Networks with logistic regression and decision trees with boosting and bagging algorithms. The results suggest that the application of feature engineering and data mining techniques can effectively enhance the performance of models predicting stock price movement during the COVID period. The results show that COVID-related handcrafted features help to increase the model prediction accuracy by 7.3% and AUROC by 6.5% on average. Further exploration showed that with data selection the decision tree model with gradient, boosting algorithm achieved 70% in AUROC and 66% in the accuracy.
一种机器学习方法:增强COVID期间医药股价格走势的预测性能
股票价格走势预测是一个具有挑战性的问题,受各种因素和事件的影响。传统的股票价格预测机器学习模型严重依赖于内部金融特征,特别是股票价格历史。然而,有许多公司外部的特征与公司的股价表现有着深刻的互动,特别是在COVID期间。在这项研究中,我们选择了9家COVID疫苗公司,收集了过去20个月的相关特征。我们添加了手工制作的外部信息,包括与covid相关的统计数据和公司特定的疫苗进展信息。我们实现、评估和比较了几种机器学习模型,包括带有逻辑回归的多层感知器神经网络和带有boosting和bagging算法的决策树。结果表明,特征工程和数据挖掘技术的应用可以有效提高COVID期间股票价格走势预测模型的性能。结果表明,与covid相关的手工特征有助于将模型预测精度平均提高7.3%,AUROC平均提高6.5%。进一步的研究表明,在数据选择上采用梯度决策树模型,增强算法的AUROC达到70%,准确率达到66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信