{"title":"On Lemon Defect Recognition with Visual Feature Extraction and Transfers Learning","authors":"Yizhi He, Tianchen Zhu, Mingxu Wang, Hanqing Lu","doi":"10.4236/jdaip.2021.94014","DOIUrl":null,"url":null,"abstract":"Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer learning to recognize defect lemons (i.e., green and mold defects). First, the data enhancement and brightness compensation techniques are used for data pre-possessing. The visual feature extraction is used to quantify the defects and determine the feature variables as the bandit basis for classification. Then we construct a convolutional neural network with an embedded Visual Geome-try Group 16 based (VGG16-based) network using transfer learning. The proposed model is compared with many benchmark models such as K-nearest Neighbor (KNN) and Support Vector Machine (SVM). Results show that the proposed model achieves the highest accuracy (95.44%) in the testing data set. The research provides a new solution for lemon defect recognition.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2021.94014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Applying machine learning to lemon defect recognition can improve the efficiency of lemon quality detection. This paper proposes a deep learning-based classification method with visual feature extraction and transfer learning to recognize defect lemons (i.e., green and mold defects). First, the data enhancement and brightness compensation techniques are used for data pre-possessing. The visual feature extraction is used to quantify the defects and determine the feature variables as the bandit basis for classification. Then we construct a convolutional neural network with an embedded Visual Geome-try Group 16 based (VGG16-based) network using transfer learning. The proposed model is compared with many benchmark models such as K-nearest Neighbor (KNN) and Support Vector Machine (SVM). Results show that the proposed model achieves the highest accuracy (95.44%) in the testing data set. The research provides a new solution for lemon defect recognition.