Spatial Regression Analysis of Pedestrian Crashes Based on Point-of-Interest Data

Yanyan Chen, Jiajie Ma, Shaohua Wang
{"title":"Spatial Regression Analysis of Pedestrian Crashes Based on Point-of-Interest Data","authors":"Yanyan Chen, Jiajie Ma, Shaohua Wang","doi":"10.4236/jdaip.2020.81001","DOIUrl":null,"url":null,"abstract":"Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and various predictor variables based on open source point-of-interest (POI) data which can provide specific land use features and user characteristics. Spatial regression models were developed at Traffic Analysis Zone (TAZ) level using 10,333 pedestrian crash records within the Fifth Ring of Beijing in 2015. Several spatial econometrics approaches were used to examine the spatial autocorrelation in crash count per TAZ, and the spatial heterogeneity was investigated by a geographically weighted regression model. The results showed that spatial error model performed better than other two spatial models and a traditional ordinary least squares model. Specifically, bus stops, hospitals, pharmacies, restaurants, and office buildings had positive impacts on pedestrian crashes, while hotels were negatively associated with the occurrence of pedestrian crashes. In addition, it was proven that there was a significant sign of localization effects for different POIs. Depending on these findings, lots of recommendations and countermeasures can be proposed to better improve the traffic safety for pedestrians.","PeriodicalId":71434,"journal":{"name":"数据分析和信息处理(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数据分析和信息处理(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jdaip.2020.81001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Pedestrian safety has recently been considered as one of the most serious issues in the research of traffic safety. This study aims at analyzing the spatial correlation between the frequency of pedestrian crashes and various predictor variables based on open source point-of-interest (POI) data which can provide specific land use features and user characteristics. Spatial regression models were developed at Traffic Analysis Zone (TAZ) level using 10,333 pedestrian crash records within the Fifth Ring of Beijing in 2015. Several spatial econometrics approaches were used to examine the spatial autocorrelation in crash count per TAZ, and the spatial heterogeneity was investigated by a geographically weighted regression model. The results showed that spatial error model performed better than other two spatial models and a traditional ordinary least squares model. Specifically, bus stops, hospitals, pharmacies, restaurants, and office buildings had positive impacts on pedestrian crashes, while hotels were negatively associated with the occurrence of pedestrian crashes. In addition, it was proven that there was a significant sign of localization effects for different POIs. Depending on these findings, lots of recommendations and countermeasures can be proposed to better improve the traffic safety for pedestrians.
基于兴趣点数据的行人碰撞空间回归分析
行人安全已成为近年来交通安全研究的热点问题之一。本研究旨在基于开源兴趣点(POI)数据,分析行人碰撞频率与各种预测变量之间的空间相关性,这些数据可以提供具体的土地利用特征和用户特征。利用2015年北京五环10333例行人交通事故记录,建立了交通分析区(TAZ)水平的空间回归模型。采用空间计量经济学方法分析了交通事故数量的空间自相关性,并采用地理加权回归模型研究了空间异质性。结果表明,空间误差模型优于其他两种空间模型和传统的普通最小二乘模型。其中公交车站、医院、药店、饭店、办公楼对行人交通事故的发生有正向影响,而酒店对行人交通事故的发生有负相关。此外,还证明了不同poi存在显著的局部化效应。根据这些发现,可以提出许多建议和对策,以更好地提高行人的交通安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
91
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信